Какие дроби бывают: Виды дробей

Содержание

Десятичные дроби

Мы уже говорили, что дроби бывают обыкновенные и десятичные. На данный момент мы немного изучили обыкновенные дроби. Мы узнали, что обыкновенные дроби бывают правильные и неправильные. Также мы узнали, что обыкновенные дроби можно сокращать, складывать, вычитать умножать и делить. И ещё мы узнали, что бывают так называемые смешанные числа, которые состоят из целой и дробной части.

Мы ещё не до конца изучили обыкновенные дроби. Есть немало тонкостей и деталей, о которых следует поговорить, но уже сегодня мы начнём изучать десятичные дроби, поскольку обыкновенные и десятичные дроби достаточно часто приходится сочетать. То есть при решении задач приходиться работать с обоими видов дробей.

Этот урок возможно покажется сложным и непонятным. Это вполне нормально. Такого рода уроки требуют, чтобы их именно изучали, а не просматривали поверхностно.

Выражение величин в дробном виде

Иногда удобно бывает показать что-либо в дробном виде.

Например, одна десятая часть дециметра записывается так:

Это выражение означает, что один дециметр был разделён на десять равных частей, и от этих десяти частей была взята одна часть. А одна часть из десяти в данном случае равна одному сантиметру:


Рассмотрим следующий пример. Пусть требуется показать 6 см и ещё 3 мм в сантиметрах в дробном виде.

Итак, 6 целых сантиметров у нас уже есть:

Но осталось еще 3 миллиметра. Как показать эти 3 миллиметра, при этом в сантиметрах? На помощь приходят дроби. Один сантиметр это десять миллиметров. Три миллиметра это три части из десяти. А три части из десяти записываются как см

Выражение см означает, что один сантиметр был разделён на десять равных частей, и от этих десяти частей взяли три части.

В результате имеем шесть целых сантиметров и три десятых сантиметра:

Цифра 6 показывает число целых сантиметров, а дробь — число дробных. Эта дробь читается как «шесть целых и три десятых сантиметра».

Дроби, в знаменателе которых присутствуют числа 10, 100, 1000 можно записывать без знаменателя. Сначала пишут цéлую часть, а потом числитель дробной части. Целая часть отделяется от числителя дробной части запятой.

Например, запишем без знаменателя. Сначала записываем целую часть. Целая часть это 6

6

Целая часть записана. Сразу же после написания целой части ставим запятую:

6,

И теперь записываем числитель дробной части. В смешанном числе числитель дробной части это число 3. Записываем после запятой тройку:

6,3

Любое число, которое представляется в таком виде, называется десятичной дробью.

Поэтому показать 6 см и ещё 3 мм в сантиметрах можно с помощью десятичной дроби:

6,3 см

Выглядеть это будет следующим образом:

На самом деле десятичные дроби это те же самые обыкновенные дроби и смешанные числа. Особенность таких дробей заключается в том, что в знаменателе их дробной части содержатся числа 10, 100, 1000 или 10000.

Как и смешанное число, десятичная дробь имеет цéлую часть и дробную. Например, в смешанном числе целая часть это 6, а дробная часть это .

В десятичной дроби 6,3 целая часть это число 6, а дробная часть это числитель дроби , то есть число 3.

Бывает и так, что обыкновенные дроби в знаменателе которых числа 10, 100, 1000 даны без целой части. Например, дробь дана без целой части. Чтобы записать такую дробь как десятичную, сначала записывают 0, затем ставят запятую и записывают числитель дробной части. Дробь без знаменателя будет записана следующим образом:

0,5

Читается как «ноль целых, пять десятых».


Перевод смешанных чисел в десятичные дроби

Когда мы записываем смешанные числа без знаменателя, мы тем самым перевóдим их в десятичные дроби. При переводе обыкновенных дробей в десятичные дроби нужно знать несколько моментов, о которых мы сейчас поговорим.

После того как записана целая часть, обязательно нужно посчитать количество нулей в знаменателе дробной части, поскольку количество нулей дробной части и количество цифр после запятой в десятичной дроби должно быть одинаковым. Что это значит? Рассмотрим следующий пример: перевести смешанное число в десятичную дробь.

Сначала записываем целую часть и ставим запятую:

3,

И можно бы сразу записать числитель дробной части и десятичная дробь готова, но обязательно нужно посчитать сколько нулей содержится в знаменателе дробной части.

Итак, посчитаем количество нулей в дробной части смешанного числа .  Видим, что в знаменателе дробной части один ноль. Значит в десятичной дроби после запятой будет одна цифра и это цифра будет числитель дробной части смешанного числа , то есть число 2

3,2

Таким образом, смешанное число при переводе в десятичную дробь обращается в 3,2. Эта десятичная дробь читается так:

«Три целых, две десятых»

«Десятых»

потому что в дробной части смешанного числа содержится число 10.


Пример 2. Перевести смешанное число в десятичную дробь.

Записываем цéлую часть и ставим запятую:

5,

И можно бы сразу записать числитель дробной части и получить десятичную дробь 5,3 но правило говорит, что после запятой должно быть столько цифр сколько нулей в знаменателе дробной части смешанного числа . А мы видим, что в знаменателе дробной части   два нуля. Значит в нашей десятичной дроби после запятой должно быть две цифры, а не одна.

В таких случаях числитель дробной части нужно немного видоизменить: добавить ноль перед числителем, то есть перед числом 3

Теперь можно довести дело до конца. Записываем после запятой числитель дробной части:

5,03

Видим, что количество цифр после запятой и количество нулей в знаменателе дробной части смешанного числа   одинаково.

Десятичная дробь 5,03 читается так:

«Пять целых, три сотых»

«Сотых» потому что в знаменателе дробной части смешанного числа содержится число 100.


Пример 3. Перевести смешанное число в десятичную дробь.

Из предыдущих примеров мы узнали, что для успешного перевода смешанного числа в десятичную дробь, количество цифр в числителе дробной части и количество нулей в  знаменателе дробной части должно быть одинаковым.

Перед переводом смешанного числа в десятичную дробь, его дробную часть нужно немного видоизменить, а именно сделать так, чтобы количество цифр в числителе дробной части и количество нулей в знаменателе дробной части было одинаковым.

В первую очередь смóтрим на количество нулей в знаменателе дробной части. Видим, что там три нуля:

Наша задача организовать в числителе дробной части три цифры. Одна цифра у нас уже есть — это цифра 2. Осталось добавить ещё две цифры. Ими будут два нуля. Добавим их перед цифрой 2. В результате количество нулей в знаменателе и количество цифр в числителе станет одинаковым:

Теперь можно заняться переводом этого смешанного числа в десятичную дробь. Записываем сначала цéлую часть и ставим запятую:

3,

и сразу записываем числитель дробной части

3,002

Видим, что количество цифр после запятой и количество нулей в знаменателе дробной части смешанного числа одинаково.

Десятичная дробь 3,002 читается так:

«Три целых, две тысячных»

«Тысячных» потому что в знаменателе дробной части смешанного числа   содержится число 1000.


Перевод обыкновенных дробей в десятичные дроби

Обыкновенные дроби, у которых в знаменателе числа 10, 100, 1000 или  10000, тоже можно перевести в десятичные дроби. Поскольку у обыкновенной дроби целая часть отсутствует, сначала записывают 0, затем ставят запятую и записывают числитель дробной части.

Здесь также количество нулей в знаменателе и количество цифр в числителе должно быть одинаковым. Поэтому следует быть внимательным.

Пример 1. Перевести обыкновенную дробь в десятичную дробь.

Целая часть отсутствует, значит сначала записываем 0 и ставим запятую:

0,

Теперь смóтрим на количество нулей в знаменателе. Видим, что там один ноль. И в числителе одна цифра. Значит можно спокойно продолжить десятичную дробь, записав после запятой цифру 5

0,5

В полученной десятичной дроби 0,5 количество цифр после запятой и количество нулей в знаменателе дроби одинаково. Значит дробь переведена правильно.

Десятичная дробь 0,5 читается так:

«Ноль целых, пять десятых»


Пример 2. Перевести обыкновенную дробь в десятичную дробь.

Целая часть отсутствует. Записываем сначала 0 и стáвим запятую:

0,

Теперь смóтрим на количество нулей в знаменателе. Видим, что там два нуля. А в числителе только одна цифра. Чтобы сделать количество цифр и количество нулей одинаковым, добавим в числителе перед цифрой 2 один ноль. Тогда дробь примет вид  . Теперь количество нулей в знаменателе и количество цифр в числителе одинаково. Значит можно продолжить десятичную дробь:

0,02

В полученной десятичной дроби 0,02 количество цифр после запятой и количество нулей в знаменателе дроби  одинаково. Значит дробь переведена правильно.

Десятичная дробь 0,02 читается так:

«Ноль целых, две сотых».


Пример 3. Перевести обыкновенную дробь в десятичную дробь.

Записываем 0 и стáвим запятую:

0,

Теперь посчитаем количество нулей в знаменателе дроби . Видим, что там пять нулей, а в числителе только одна цифра. Чтобы сделать количество нулей в знаменателе и количество цифр в числителе одинаковым, нужно в числителе перед цифрой 5 дописать четыре нуля:

Теперь можно продолжить десятичную дробь. Записываем после запятой числитель дроби

0,00005

В полученной десятичной дроби 0,00005 количество цифр после запятой и количество нулей в знаменателе дроби  одинаково. Значит дробь переведена правильно.

Десятичная дробь 0,00005 читается так:

«Ноль целых, пять стотысячных».


Перевод неправильных дробей в десятичную дробь

Неправильная дробь это дробь, у которой числитель больше знаменателя.

Бывают неправильные дроби, у которых в знаменателе содержатся числа 10, 100, 1000 или 10000. Такие дроби можно переводить в десятичные. Но перед переводом в десятичную дробь, у таких дробей необходимо выделять цéлую часть.

Пример 1. Перевести неправильную дробь  в десятичную.

Дробь является неправильной. Чтобы перевести такую дробь в десятичную, нужно в первую очередь выделить у нее цéлую часть. Вспоминаем, как выделять целую часть у неправильных дробей. Если забыли, советуем вернуться к этой теме и хорошенько изучить её.

Итак, выделим целую часть в неправильной дроби . Напомним, что дробь означает деление — в данном случае деление числа 112 на число 10. Деление нужно выполнить с остатком:

Посмóтрим на этот рисунок и соберём новое смешанное число, подобно детскому конструктору. Частное 11 будет целой частью, остаток 2 — числителем дробной части, делитель 10 — знаменателем дробной части:

Мы получили смешанное число . Его и переведём в десятичную дробь. А как переводить такие числа в десятичные дроби мы уже знаем. Сначала записываем целую часть и ставим запятую:

11,

Теперь посчитаем количество нулей в знаменателе дробной части. Видим, что там один ноль. И в числителе дробной части одна цифра. Значит количество нулей в знаменателе дробной части  и количество цифр в числителе дробной части одинаково. Это даёт нам возможность сразу записать после запятой числитель дробной части:

11,2

Значит, неправильная дробь при переводе в десятичную обращается в 11,2

Десятичная дробь 11,2 читается так:

«Одиннадцать целых, две десятых».


Пример 2. Перевести неправильную дробь   в десятичную дробь.

Это неправильная дробь, поскольку числитель больше знаменателя. Но её можно перевести в десятичную дробь, поскольку в знаменателе содержится число 100.

В первую очередь выделим целую часть этой дроби. Для этого разделим уголком 450 на 100:

Соберём новое смешанное число — получим . Теперь переведём его в десятичную дробь. Записываем целую часть и ставим запятую:

4,

Теперь посчитаем количество нулей в знаменателе дробной части и количество цифр в числителе дробной части. Видим, что количество нулей в знаменателе  и количество цифр в числителе одинаково. Это даёт нам возможность сразу записать числитель дробной части после запятой:

4,50

Значит неправильная дробь  при переводе в десятичную обращается в 4,50

При решении задач, если в конце десятичной дроби оказываются нули, их можно отбросить. Давайте и мы отбросим ноль в нашем ответе. Тогда мы получим 4,5

Это одна из интересных особенностей десятичных дробей. Она заключается в том, что нули которые стоят в конце дроби, не придают этой дроби никакого веса. Другими словами, десятичные дроби 4,50 и 4,5 равны и между ними можно поставить знак равенства:

4,50 = 4,5

Возникает вопрос «а почему так происходит?» Ведь на вид 4,50 и 4,5 разные дроби. Весь секрет кроется в основном свойстве дроби, котором мы изучали ранее. Мы попробуем доказать, почему равны десятичные дроби 4,50 и 4,5, но после изучения следующей темы, которая называется «перевод десятичной дроби в смешанное число».


Перевод десятичной дроби в смешанное число

Любая десятичная дробь может быть обратно переведена в смешанное число. Для этого достаточно уметь читать десятичные дроби.

Например, переведём 6,3 в смешанное число. 6,3 это шесть целых и три десятых. Записываем сначала шесть целых:

6

и рядом три десятых:


Пример 2. Перевести десятичную дробь 3,002 в смешанное число

3,002 это три целых и две тысячных. Записываем сначала три целых

3

и рядом записываем две тысячных:

3


Пример 3. Перевести десятичную дробь 4,50 в смешанное число

4,50 это четыре целых и пятьдесят сотых. Записываем четыре целых

4

и рядом пятьдесят сотых:

Кстати, давайте вспомним последний пример из предыдущей темы. Мы сказали, что десятичные дроби 4,50 и 4,5 равны. Также мы сказали, что ноль можно отбросить. Докажем, что десятичные 4,50 и 4,5 равны. Для этого переведем обе десятичные дроби в смешанные числа.

После перевода в смешанное число десятичная дробь 4,50 обращается в , а десятичная дробь 4,5 обращается в

Имеем два смешанных числа   и  . Переведём эти смешанные числа в неправильные дроби:

Теперь имеем две дроби    и  . Теперь вспоминаем основное свойство дроби, которое говорит о том, что при умножении (или делении) числителя и знаменателя дроби на одно и то же число, значение дроби не меняется.

Давайте разделим числитель и знаменатель первой дроби на число 10

Получили , а это есть вторая дробь. Значит и  равны между собой и равны одному и тому же значению:

  = 

Попробуйте на калькуляторе разделить сначала 450 на 100, а затем 45 на 10. Забавная штука получится.


Перевод десятичной дроби в обыкновенную дробь

Любая десятичная дробь может быть обратно переведена в обыкновенную дробь. Для этого опять же достаточно уметь читать десятичные дроби. Например, переведём 0,3 в обыкновенную дробь. 0,3 это ноль целых и три десятых. Записываем сначала ноль целых:

0

и рядом три десятых 0 . Ноль по традиции не записывают, поэтому окончательный ответ будет не 0, а просто .


Пример 2. Перевести десятичную дробь 0,02 в обыкновенную дробь.

0,02 это ноль целых и две сотых. Ноль не записываем, поэтому сразу записываем две сотых


Пример 3. Перевести 0,00005 в обыкновенную дробь

0,00005 это ноль целых и пять сто тысячных. Ноль не записываем, поэтому сразу записываем пять сто тысячных 


Пример 4. Перевести 3,5 в обыкновенную дробь

Сначала переведём данную десятичную дробь в смешанное число:

Теперь смешанное число переведём в неправильную (обыкновенную) дробь:

Обыкновенные дроби. Конспект — Kid-mama

Из этой статьи вы узнаете:

  1. Что такое обыкновенные дроби.
  2. Виды обыкновенных дробей
  3. Преобразования дробей
  4. Сравнение дробей
  5. Основное свойство дроби. Сокращение дробей. Понятие о НОД.
  6. Как приводить дроби к одному знаменателю. НОК
  7. Сложение и вычитание дробей.
  8. Умножение и деление дробей. Взаимно обратные числа и дроби.

1 Что такое обыкновенные дроби. Виды дробей.
Дробь всегда означает какую то часть целого. Дело в том, что не всегда количество можно передать натуральными числами, то есть пересчитать: 1,2,3 и т. д.  Как, например, обозначить половину арбуза или четверть часа? Вот для этого и появились дробные числа, или дроби.

Для начала нужно сказать, что вообще дробей бывает два вида: обыкновенные дроби и десятичные дроби. Обыкновенные дроби записываются так:
Десятичные дроби записываются по другому:


Обыкновенные дроби состоят из двух частей: вверху — числитель, внизу — знаменатель. Числитель и знаменатель разделяет дробная черта. Итак, запомните:

Любая дробь — это часть целого. За целое обычно принимают  1 (единицу). Знаменатель дроби показывает, на сколько частей разделили целое (1), а числитель — сколько частей взяли. Если мы разрезали торт на 6 одинаковых частей ( в математике говорят долей ), то каждая часть торта будет равна 1/6. Если Вася съел 4 куска, то значит, он съел 4/6 .

С другой стороны, дробная черта — это не что иное, как знак деления. Поэтому дробь — это частное двух чисел — числителя и знаменателя. В тексте задач или в рецептах блюд  дроби записываются обычно так: 2/3,  1/2  и т.д. Некоторые дроби получили собственное название, например, 1/2 — «половина», 1/3 — «треть», 1/4 — «четверть»
А теперь разберемся, какие бывают виды обыкновенных дробей.

2 Виды обыкновенных дробей

Обыкновенные дроби бывают трех видов: правильные, неправильные и смешанные:

Правильная дробь

Если числитель меньше, чем знаменатель, то такую дробь называют правильной, например:  Правильная дробь всегда меньше 1.

Неправильная дробь

Если числитель больше, чем знаменатель или равен знаменателю, такая дробь называется неправильной, например:

Неправильная дробь больше единицы(если числитель больше знаменателя) или равна единице (если числитель равен знаменателю)

Смешанная дробь

Если дробь состоит из целого числа (целая часть) и правильной дроби (дробная часть), то такая дробь называется смешанной, например:

Смешанная дробь всегда больше единицы.

3 Преобразования дробей

В математике обыкновенные дроби часто приходится преобразовывать, то есть смешанную дробь превращать в неправильную и наоборот. Это необходимо для выполнения некоторых действий, например, умножения и деления.

Итак, любую смешанную дробь можно перевести в неправильную. Для этого целую часть умножают на знаменатель и прибавляют числитель дробной части. Полученную сумму берут числителем, а знаменатель оставляют тот же, например:

Любую неправильную дробь можно превратить в смешанную. Для этого делят числитель на знаменатель (с остатком).Полученное число будет целой частью, а остаток — числителем дробной части, например:

При этом говорят: «Мы выделили целую часть из неправильной дроби».

Необходимо запомнить еще одно правило: Любое целое число можно представить в виде обыкновенной дроби со знаменателем 1, например:

Поговорим о том, как сравнивать дроби.

4 Сравнение дробей

При сравнении дробей может быть несколько вариантов: Легко сравнивать дроби с одинаковыми знаменателями, гораздо сложнее — если знаменатели разные. А есть еще и сравнение смешанных дробей. Но не волнуйтесь, сейчас мы подробно рассмотрим каждый вариант и научимся сравнивать дроби.

Из двух дробей с одинаковыми знаменателями, но разными числителями больше та дробь, у которой числитель больше, например:

Из двух дробей с одинаковыми числителями, но разными знаменателями больше та дробь, у которой знаменатель меньше, например:

Неправильная или смешанная дробь всегда больше правильной дроби, например:

При сравнении двух смешанных дробей больше та дробь, у которой целая часть больше, например:

Если целые части у смешанных дробей одинаковые, больше та дробь, у которой дробная часть больше, например:

Сравнивать дроби с разными числителями и знаменателями без их преобразования нельзя. Сначала дроби нужно привести к одному знаменателю, а затем  сравнить их числители. Больше та дробь, у которой числитель будет больше. А вот как приводить дроби к одинаковому знаменателю, мы рассмотрим в следующих двух разделах статьи статьи. Сначала мы рассмотрим основное свойство дроби и сокращение дробей, а затем непосредственно приведение дробей к одному знаменателю.

5 Основное свойство дроби. Сокращение дробей. Понятие о НОД.

Запомните: складывать и вычитать, а также сравнивать можно только дроби, у которых одинаковые знаменатели. Если знаменатели разные, то сначала нужно привести дроби к одному знаменателю, то есть так преобразовать одну из дробей, чтобы ее знаменатель стал таким же, как у второй дроби.

У дробей есть одно важное свойство, называемое также основным свойством дроби:

Если и числитель, и знаменатель дроби умножить или разделить на одно и то же число, то величина дроби при этом  не изменится:

Благодаря этому свойству мы можем сокращать дроби:

Сократить дробь — значит разделить и числитель, и знаменатель на одно и то же число(смотрите пример чуть выше). Когда мы сокращаем дробь, то можно расписать наши действия так:

Чаще же в тетради сокращают дробь так:

Но запомните: сокращать можно только множители. Если в числителе или знаменателе сумма или разность, сокращать слагаемые нельзя. Пример:

Нужно сначала преобразовать сумму в множитель:

Иногда, при работе с большими числами,  для того, чтобы сократить дробь, удобно найти наибольший общий делитель числителя и знаменателя (НОД)

Наибольший общий делитель (НОД) нескольких чисел — это наибольшее натуральное число, на которое эти числа делятся без остатка.

Для того, чтобы найти НОД двух чисел (например, числителя и знаменателя дроби), нужно разложить оба числа на простые множители, отметить одинаковые множители в обоих разложениях, и перемножить эти множители. Полученное произведение и будет НОД. Например, нам нужно сократить дробь:

Найдем НОД чисел 96 и 36:

НОД нам показывает, что и в числителе, и в знаменателе есть множитель12, и мы легко сокращаем дробь.

Иногда, чтобы привести дроби к одному знаменателю, достаточно сократить одну из дробей. Но чаще бывает необходимо подбирать дополнительные множители для обеих дробей .Сейчас мы рассмотрим, как это делается. Итак:

6 Как приводить дроби к одному знаменателю. Наименьшее общее кратное (НОК).

Когда мы приводим дроби к одинаковому знаменателю, мы подбираем для знаменателя такое число, которое бы делилось и на первый, и на второй знаменатель (то есть было бы кратным обоим знаменателям, выражаясь математическим языком). И желательно, чтобы  число это было как можно меньшим, так удобнее считать. Таким образом, мы должны найти НОК обоих знаменателей.

Наименьшее общее кратное двух чисел (НОК) — это наименьшее натуральное число, которое делится на оба эти числа без остатка. Иногда НОК можно подобрать устно, но чаще, особенно при работе с большими числами, приходится находить НОК письменно, с помощью следующего алгоритма:

Для того, чтобы найти НОК нескольких чисел, нужно:

  1. Разложить эти числа на простые множители
  2. Взять самое большое разложение, и записать эти числа в виде произведения
  3. Выделить в других разложениях числа, которые не встречаются в самом большом разложении (или встречаются в нем меньшее число раз), и добавить их к произведению.
  4. Перемножить все числа в произведении, это и будет НОК.

Например, найдем НОК чисел 28 и 21:

Однако вернемся к нашим дробям. После того, как мы подобрали или письменно вычислили НОК  обоих знаменателей, мы должны умножить числители этих дробей на дополнительные множители. Найти их можно, разделив НОК на знаменатель соответствующей дроби, например:

 

Таким образом мы привели наши дроби к одному знаменателю — 15.

7 Сложение и вычитание дробей

Сложение и вычитание дробей с одинаковыми знаменателями

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же, например:

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тот же, например:

Сложение и вычитание смешанных дробей с одинаковыми знаменателями

Чтобы сложить смешанные дроби, надо отдельно сложить их целые части, а затем сложить их дробные части, и записать результат смешанной дробью:

Пример 1:

Пример 2:

Если при сложении дробных частей получилась неправильная дробь, выделяем из нее целую часть и прибавляем ее к целой части, например:

Вычитание проводится аналогично: целая часть вычитается из целой, а дробная — из дробной части:

Если дробная часть вычитаемого больше, чем дробная часть уменьшаемого, «занимаем» единицу из целой части, превращая уменьшаемое в неправильную дробь, а дальше действуем как обычно:

Аналогично вычитаем из целого числа дробь:

Как сложить целое число и дробь

Для того, чтобы сложить целое число и дробь, нужно просто добавить это число перед дробью, при этом получится смешанная дробь, например:

Если мы складываем целое число и смешанную дробь, мы прибавляем это число к целой части дроби, например:

Для того, чтобы сложить или вычесть дроби с разными знаменателями, нужно сначала привести их к одному знаменателю, а дальше действовать, как при сложении дробей с одинаковыми знаменателями (сложить числители):

При вычитании действуем аналогично:

Если работаем со смешанными дробями, приводим к одинаковому знаменателю их дробные части и далее вычитаем как обычно: целую часть из целой, а дробную — из дробной части:

8 Умножение и деление дробей.

Умножать и делить обыкновенные дроби гораздо проще, чем складывать и вычитать, так как не нужно приводить их к одному знаменателю. Запомните простые правила умножения и деления дробей:

Чтобы умножить дробь на натуральное число, нужно числитель умножить на это число, а знаменатель оставить без изменений  

Например:

Чтобы умножить дробь на дробь, нужно числитель умножить на числитель, а знаменатель — на знаменатель:

Например:

При умножении смешанных дробей нужно сначала записать эти дроби в виде неправильных дробей, а затем умножать как обычно: числитель умножить на числитель, а знаменатель на знаменатель:

Перед тем, как перемножать числа в числителе и знаменателе желательно сократить дробь, то есть избавиться от одинаковых множителей в числителе и знаменателе, как в нашем примере.

Чтобы  разделить дробь на натуральное число, нужно знаменатель умножить на это число, а числитель оставить без изменений:

Например:

Деление дроби на дробь

Чтобы разделить одну дробь на другую, нужно делимое умножить на число, обратное делителю (обратную дробь). Что же это за обратная дробь?

Взаимно обратные числа и дроби.

Если мы перевернем дробь, то есть поменяем местами числитель и знаменатель, то получим обратную дробь. Произведение дроби и обратной ей дроби дает единицу. В математике такие числа называют взаимно обратными числами:

Например, числа — взаимно обратные, так как 

Таким образом, вернемся к делению дроби на дробь:

Чтобы разделить одну дробь на другую, нужно делимое умножить на дробь, обратную делителю:

Например:

При делении смешанных дробей нужно так же, как и при умножении, сначала перевести их в неправильные дроби:

При умножении и делении дробей на целые натуральные числа, можно представлять эти числа так же в виде дробей со знаменателем 1.

И при делении целого числа на дробь  представляем это число в виде дроби со знаменателем 1:

 

Обыкновенные дроби и дробные выражения


⇐ ПредыдущаяСтр 2 из 6Следующая ⇒

 

Итак, какие бывают дроби?

Дроби бывают трёх видов. Обыкновенные, десятичные и смешанные числа (содержащие целую и дробную части).

 

Десятичные дроби и смешанные числа всегда можно перевести в обыкновенные дроби. Обратный перевод не всегда возможен. Смешанные числа практически не используются в старших классах. Для того, чтобы с ними работать, их всяко надо переводить в обыкновенные («неправильные») дроби. Выбор вида дробей для работы с заданием зависит от этого самого задания. При наличии разных видов дробей в одном задании, самое надёжное — перейти к обыкновенным дробям.

 

Всё многообразие преобразований дробей обеспечивается одним-единственным свойством! Оно так и называется, основное свойство дроби: если числитель и знаменатель дроби умножить (разделить) на одно и то же число, дробь не изменится.

 

Кстати, если в дроби стоят всякие логарифмы, синусы и прочие буковки, это ничего не меняет. В том смысле, что все действия с дробными выражениями ничем не отличаются от действий с обыкновенными дробями!

 

 

Любое целое число можно записать в виде дроби. В числителе — само число, в знаменателе — единица. С буквами — то же самое.

 

Иногда вместо горизонтальной чёрточки ставят наклонную черту: 1/2, 3/4, 19/5, ну, и так далее. Чёрточка, что горизонтальная, что наклонная, означает деление верхнего числа (числителя) на нижнее (знаменатель).

 

Иногда в примерах возникает такой казус как «трёхэтажная дробь»:

 

 

Т.е. всё зависит от того какую черту считать главной.

 

Десятичные дроби

С десятичными дробями всё просто. Как слышится, так и пишется!

Например:

Ноль целых, двадцать пять сотых (0,25) так и пишем: 25/100.

Сокращаем (делим числитель и знаменатель на 25),

получаем обычную дробь: 1/4.

Любую десятичную дробь можно превратить в обыкновенную.

Но не каждая обыкновенная дробь переводится в десятичную!

 

 

 

Для работы со смешанными числами их нужно перевести в обыкновенные (неправильные) дроби. Как это сделать? Надо знаменатель дробной части умножить на целую часть и прибавить числитель дробной части. Это будет числитель обычной дроби. А знаменатель? Знаменатель останется тем же самым. Звучит сложно, но на деле всё элементарно.

 

Например:

 

Действия с обыкновенными дробями:

 

Сложение и вычитание дробей

 

Сложить (отнять) дроби с одинаковыми знаменателями просто: при сложении (вычитании) знаменатель не меняется. Числители складываются (вычитаются) и дают числитель результата. Например:

 

Или:

 

В общем виде:

 

 

А если знаменатели разные? Тогда, используя основное свойство дроби делаем знаменатели одинаковыми! Это называется «приведём к общему знаменателю».

Например:

или

или

 

То же самое происходит если надо сложить два дробных выражения:

 

Надо сделать знаменатели одинаковыми. Так и записываем, черту дроби, сверху пустое место оставим, потом допишем, а снизу пишем произведение знаменателей, чтобы не забыть:

 

 

И, конечно, ничего в правой части не перемножаем, скобки не открываем! А теперь, глядя на общий знаменатель правой части, соображаем: чтобы в первой дроби получился знаменатель х(х+1), надо числитель и знаменатель этой дроби умножить на (х+1). А во второй дроби — на х. Получится вот что:

 

 

Обратите внимание! Здесь появились скобки! Скобки появляются потому, что мы умножаем весь числитель и весь знаменатель! А не их отдельные кусочки…

В числителе правой части записываем сумму числителей, всё как в числовых дробях, затем раскрываем скобки в числителе правой части, т.е. перемножаем всё и приводим подобные.

Раскрывать скобки в знаменателях, перемножать что-то не нужно! Вообще, в знаменателях (любых) всегда приятнее произведение! Получим:

 

Умножение дробей

 

Чтобы умножить две обыкновенные дроби, нужно перемножить их числители и знаменатели:

 

 

В частности, чтобы умножить дробь на натуральное число, надо числитель умножить на число, а знаменатель оставить тем же:

 

 

 

 

Перед умножением и делением алгебраических дробей, зачастую выгодно разложить их числители и знаменатели на множители — это облегчает сокращение алгебраической дроби, которая получается в результате умножения или деления.

Например:

Для разложения алгебраических дробей используются формулы сокращённого умножения (разность квадратов, квадрат разности и тд…):

Деление дробей

 

Чтобы поделить одну обыкновенную дробь на другую, нужно умножить первую на дробь, обратную второй:

 

 

 

Например

 

 

1.1 Контрольные вопросы и задания для самостоятельного решения по разделу 1

Ответьте на вопросы:

a) Как избавиться от «трёхэтажности» в обыкновенной дроби?

b) По какому правилу складываются и вычитаются обыкновенные дроби?

c) Как умножить обыкновенные дроби?

d) Как разделить дробь на дробь?

e) Как перевести смешанную дробь в «неправильную»?

 

Решите упражнения:

№ 1.

1.1) 1.2)

 

1.3) 1.4)

 

№ 2.

2.1)

2.2)

2.3)

Проверьте своё решение:

 

Ответы:

1.1) 1.2) 1.3) 1.4)

2.2) 2.3) 2.4)

 

Проценты

 

Что такое проценты в математике? Как решать задачи на проценты?

Единственно, что нужно запомнить железно – что такое один процент. Это понятие — и есть главный ключ к решению задач на проценты, да и к работе с процентами вообще.


Рекомендуемые страницы:

Что такое функция

Функция связывает вход с выходом.

Это похоже на машину, у которой есть вход и выход.

И выход как-то связан с входом.


f (x)

« f (x) = … » — классический способ написания функции.
И, как вы увидите, есть и другие способы!

Вход, отношения, выход

Мы увидим много способов думать о функциях, но всегда есть три основных части:

  • Вход
  • Отношения
  • Выход

Пример: «Умножить на 2» — очень простая функция.

Вот три части:

Ввод Отношения Выход
0 × 2 0
1 × 2 2
7 × 2 14
10 × 2 20

Что будет на выходе при вводе 50?

Некоторые примеры функций

  • x 2 (возведение в квадрат) — это функция
  • x 3 +1 также является функцией
  • Синус, косинус и тангенс — функции, используемые в тригонометрии
  • и многое другое!

Но мы не будем рассматривать конкретные функции. ..
… вместо этого мы рассмотрим общую идею функции.

Имена

Во-первых, полезно присвоить функции имя .

Наиболее распространенное название — « f », но у нас могут быть и другие названия, например « g » … или даже « мармелад », если захотим.

Но давайте использовать «f»:

Мы говорим: «f x равно x в квадрате»

то, что идет от к , функция помещается в круглые скобки () после имени функции:

Итак, f (x) показывает нам, что функция называется « f », а « x » идет в

.

И мы обычно видим, что функция делает с вводом:

f (x) = x 2 показывает нам, что функция « f » берет « x » и возводит его в квадрат.

Пример: с f (x) = x 2 :

  • ввод 4
  • становится выходом 16.

Фактически мы можем написать f (4) = 16 .

«x» — это просто заполнитель!

Не беспокойтесь о «x», он нужен только для того, чтобы показать нам, куда идет ввод и что с ним происходит.

Это может быть что угодно!

Итак, эта функция:

ф (х) = 1 — х + х 2

Выполняет те же функции, что и:

  • f (q) = 1 — q + q 2
  • ч (А) = 1 — А + А 2
  • ширина (θ) = 1 — θ + θ 2

Переменная (x, q, A и т. Д.) Находится там, поэтому мы знаем, куда поместить значения:

f ( 2 ) = 1 — 2 + 2 2 = 3

Иногда отсутствует название функции

Иногда у функции нет имени, и мы видим что-то вроде:

у = х 2

Но есть еще:

  • вход (x)
  • отношение (возведение в квадрат)
  • и выход (у)

Относительно

Вверху мы сказали, что функция — это , например, — машина. Но у функции на самом деле нет ремней, шестеренок или каких-либо движущихся частей — и на самом деле она не разрушает то, что мы в нее вкладываем!

Функция связывает вход с выходом.

Сказать « f (4) = 16 » — все равно что сказать, что 4 каким-то образом связано с 16. Или 4 → 16

Пример: это дерево вырастает на 20 см каждый год, поэтому высота дерева составляет , отношение к его возрасту с помощью функции h :

ч (возраст) = возраст × 20

Итак, если возраст 10 лет, то рост:

h (10) = 10 × 20 = 200 см

Вот несколько примеров значений:

Четные и нечетные функции

Это особые типы функций

Четные функции

Функция «даже», когда:

f (x) = f (−x) для всех x

Другими словами, существует симметрия относительно оси Y (как отражение):

Это кривая f (x) = x 2 +1

Их назвали «четными» функциями, потому что функции x 2 , x 4 , x 6 , x 8 и т. Д. Ведут себя так же, но есть и другие функции, которые ведут себя так же, например, cos (х):


Косинусная функция: f (x) = cos (x)
Это четная функция

Но четный показатель не всегда дает четную функцию, например (x + 1) 2 — это , а не — четная функция.

Нечетные функции

Функция считается «нечетной», если:

−f (x) = f (−x) для всех x

Обратите внимание на минус перед f (x): −f (x) .

И получаем симметрию начала координат:

Это кривая f (x) = x 3 −x

Их назвали «нечетными», потому что функции x, x 3 , x 5 , x 7 и т. Д. Ведут себя так же, но есть и другие функции, которые ведут себя так же, например sin (x ) :


Синусоидальная функция: f (x) = sin (x)
Это нечетная функция

Но нечетная экспонента не всегда дает нечетную функцию, например x 3 +1 — это , а не — нечетная функция.

Ни нечетное, ни четное

Пусть вас не вводят в заблуждение имена «нечетный» и «четный» … это всего лишь имен … и функция не обязательно должна быть четной или нечетной.

На самом деле большинство функций не являются ни нечетными, ни четными. Например, просто добавив 1 к приведенной выше кривой, получим:

Это кривая f (x) = x 3 −x +1

Это не нечетная функция , и это не четная функция .
Нечетно и нечетно

Четное или нечетное?

Пример: является ли f (x) = x / (x 2 −1) четным или нечетным или ни одним?

Давайте посмотрим, что произойдет, если мы подставим −x :

f (−x) = (−x) / ((- x) 2 −1)

= −x / (x 2 −1)

= −f (х)

Итак, f (−x) = −f (x), что делает его нечетной функцией

Четное и нечетное

Единственная функция, которая является четной и нечетной , — это f (x) = 0

Особые свойства

Добавляем:

  • Сумма двух четных функций равна четным
  • Сумма двух нечетных функций нечетная
  • Сумма четной и нечетной функции не является ни четной, ни нечетной (если одна функция не равна нулю).

Умножение:

  • Произведение двух четных функций является четной функцией.
  • Произведение двух нечетных функций является четной функцией.
  • Произведение четной функции и нечетной функции является нечетной функцией.

Что такое дроби?

Вы часто бываете в ресторанах с друзьями, пытающимися придумать, как разделить счет и рассчитать чаевые? Вы когда-нибудь прибегали к совету со своего «умного» телефона? Не волнуйтесь, все мы.Черт возьми, появилась целая индустрия приложений для iPhone, которые помогают ответить на эти самые вопросы. Но на самом деле они вам не нужны. Как мы вскоре узнаем, ключ к освобождению от кремниевого помощника и самостоятельному решению этих вопросов — это понимание того, как рассчитывать с помощью процентов. Но для этого сначала нужно иметь твердое представление о дробях. Имея это в виду, сегодня мы начнем с ответа на вопрос: что такое дроби?

Есть ли числа между целыми числами в числовой строке?

Давайте начнем с того, что вернемся к целым числам и числовой прямой. В предыдущей статье мы установили, что целые числа — это группа чисел, состоящая из:

  • Все положительные целые числа: 1, 2, 3 и т. Д.,

  • их отрицательные аналоги: -1, -2, -3 и т. Д., И

  • ни положительное, ни отрицательное число 0.

Мы также говорили о том, как визуализировать сложение и вычитание положительных и отрицательных целых чисел, мысленно шаг за шагом пройдя по числовой прямой.Но что бы произошло, если бы к вашей воображаемой прогулке по числовой линии присоединились два воображаемых друга: один намного выше вас, а другой немного ниже? На каждом шагу, который вы делаете — от нуля до единицы, от одного до двух и так далее — ваш более высокий друг делает более длинный шаг, а ваш более низкий друг — меньший — и оба они постоянно попадают между целыми отметками.

Допустим, вы и ваши друзья сделали десять шагов в положительном направлении, после чего вы остановились прямо у отметки на числовой прямой с целым числом «10». «Ваш высокий друг прошел дальше вас и остановился где-то между цифрами« 12 »и« 13 », а ваш более низкий друг остановился где-то рядом с цифрой« 8 ». Как далеко уехали ваши друзья?

Дроби целые?

К сожалению, нет целых чисел, которые могли бы ответить на этот вопрос, потому что целые числа являются целыми числами, такими как «12» и «13». Но, конечно же, между каждым целым числом должны быть числа — мы знаем, что ваши друзья преодолели некоторое числовое расстояние. И, конечно, там есть цифры.Кажущиеся пустыми места между целыми числами в числовой строке на самом деле изобилуют бесконечным множеством дробных чисел, то есть числами, имеющими дробную (или не целую) часть. Возможно, вы лучше знаете их как дроби. Являются ли дроби целыми числами? Нет, это все числа между целыми числами.

Что такое дроби?

Самый простой для понимания тип дробей — это переворачивать целые числа с ног на голову. У каждого целого числа есть так называемая обратная величина, которая получается делением единицы на это целое число. Например: величина, обратная 1 — 1/1, обратная величина 2 — 1/2, обратная величина 3 — 1/3 и т. Д. Вы могли бы создать список всех таких дробей, пройдя положительные целые числа по числовой строке и вызывая обратную величину целого числа в каждой позиции. В конце концов, вы начнете получать большие числа: 1/99, 1/100, а затем, в конечном итоге, еще больше: 1/999, 1/1000, а затем еще больше и больше, навсегда.

Вы можете думать обо всех этих дробях как о кусках пирога или о частях мили, километра, срока службы или чего-то еще.Если следовать аналогии с кусочками пирога, обратное значение целого числа 1 равно 1/1, что эквивалентно 1, представляя один целый пирог. Число, обратное целому числу 2, равно 1/2, что соответствует одному куску пирога, который делится на две части, другими словами, половину пирога. Аналогично, величина, обратная целому числу 3, представляет 1/3 пирога и так далее. Чем больше целое число, с которого мы начинаем, тем меньше обратная величина и, следовательно, тем меньше дробь. Например, кусок, составляющий 1/3 пирога, намного больше, чем кусок, составляющий 1/12 пирога.А кусок, составляющий 1/99 от этого пирога, будет крошечным. Независимо от того, насколько мала дробь, вы всегда можете найти меньшие дроби, взяв обратную величину от еще больших целых чисел!

Что такое обыкновенные дроби?

Должен признаться, я никогда не слышал термина «вульгарная фракция», пока не начал готовиться к написанию этой статьи; и поскольку такие причудливые и яркие термины редко встречаются в математике, я не мог не познакомить вас с ними. Слово «вульгарный» здесь используется как синоним слова «обычное», поэтому термин «вульгарная фракция» просто относится к обычным дробям.Но что это за общие дроби? Что ж, обычные дроби — это все числа, у которых есть целое число в числителе (верхнее число) и ненулевое целое число в знаменателе (нижнее число).

Дроби, с которыми мы до сих пор имели дело, такие как 1/3 и 1/4, безусловно, обычны, но дроби вроде 2/3, 3/4 и 63/72 с числами, отличными от 1 в числителе, также распространены. Кроме того, все дроби, о которых мы говорили до сих пор, были меньше единицы, но нет причин, по которым дроби тоже не могут быть больше единицы.Таким образом, дроби, такие как 4/3, 7/4 и бесконечное множество других, тоже совершенно обычны.

Заключение

Это все математические вычисления, которые у нас есть на сегодня. Но будьте уверены, мы еще больше поговорим о дробях и о том, как интерпретировать их и работать с ними в следующих статьях (на следующей неделе мы рассмотрим числители и знаменатели). А пока вы можете подумать над проблемой: почему знаменатель (то есть нижнее число) дроби не может быть нулевым? Ищите мои объяснения в еженедельных видеороликах «Решения», которые каждую неделю публикуются в разделе видео на странице Math Dude в Facebook и на YouTube.

Присоединяйтесь к нашему растущему сообществу любителей математики в социальных сетях в Twitter и Facebook, задавайте вопросы и общайтесь с другими энтузиастами математики. Проверить это! Вы также можете задать мне вопрос по адресу mathdude@quickanddirtytips.

Ответить

Ваш адрес email не будет опубликован. Обязательные поля помечены *