Какая дробь: Дробь охотничья, какой номер на какую дичь?

Содержание

Дробь и бой ружья — Охотники.ру

Все компоненты патрона влияют на качественные характеристики дробового выстрела – одни больше, другие меньше. Но есть вещи, которые прямо определяют результат. К этому, конечно же, относится и дробь.

фото: Fotolia.com

Прежде чем говорить о дроби, хочу заметить, что приведенные ниже количественные показатели явились результатом анализа записей пристрелки различных ружей, накопившихся за десять лет. Выводы и рекомендации являются моим личным мнением и не претендуют на истину в последней инстанции.

Качество дроби имеет большое влияние на характеристику осыпи. Отличительными признаками качественной дроби являются: идеальная форма, твердость и отсутствие большого разброса в диаметре у дробин одного номера. За редким исключением современная дробь имеет хорошую шарообразную форму и достаточно однородна по диаметрам.

Иногда встречаются отклонения от стандарта, обычно диаметр больше или меньше стандартного на величину в пределах 0,1 мм.

Основной проблемой качества отечественной дроби является показатель твердости. Проблема мягкой дроби в России, видимо, существовала всегда, так как еще до революции богатые охотники выписывали твердую английскую дробь. Конечно, производителям лить мягкую дробь легче, но нельзя же на протяжении века игнорировать требования потребителя.

Если маркировки нет или ее нужно проверить, то в первом приближении это можно сделать плоскогубцами. Если вы можете сплющить дробину в лепешку, не прилагая больших усилий, то дробь мягкая. Из твердой дроби вы сможете сделать только некое подобие бочонка.

Более точный способ заключается в подсчете количества дробин в определенном весе снаряда. Твердая дробь имеет меньший удельный вес (примерно 11,05 г/см3), соответственно дробин в снаряде будет больше. Если вы пользуетесь всегда одним и тем же весом снаряда, то сможете быстро оценить твердость дроби.

Не надо забывать, что диаметр дробин должен быть одинаков. Твердость дроби зависит от количества сурьмы в сплаве, ее должно быть не менее 4–5%. Сейчас твердая дробь стала появляться на прилавках магазинов, причем как литая, так и штампованная. Штампованная, как мне кажется, предпочтительней, так как имеет дополнительный поверхностный наклеп, несмотря на возможные изъяны формы.

Используя свои данные, могу смело утверждать, что при прочих равных условиях мягкая дробь дает кучность на 20–30% ниже, чем твердая. Понятно и почему это происходит. Под действием мощного первоначального импульса дробь еще в гильзе испытывает такую динамическую нагрузку, которая превосходит предел текучести мягкого металла, и он стремится заполнить собой все пустоты. Нижние ряды дробин деформируются сильнее верхних, так как принимают на себя нагрузку последних. Все это приводит к ряду негативных последствий.

Прежде всего, неправильная форма дробинки после деформации способствует более быстрой потере скорости дробинки по сравнению с ее шарообразной сестрой.

Вот почему я считаю, что даже высокий показатель начальной скорости дроби, который любят приводить в качестве основной и всеобъемлющей характеристики патрона, не говорит о качестве оного. Этот патрон может быть снаряжен мягкой дробью, что сведет на нет высокую начальную скорость снаряда.

Из-за того, что нижние дробины деформированы сильнее расположенных выше, они испытывают большее аэродинамическое сопротивление и отстают от верхних. Растяжение снопа дроби происходит в большей степени именно из-за этого, а не из-за чока. Так можно объяснить снижение резкости, а кучность снижается из-за того, что на деформированную дробину действуют подъемные силы, отклоняющие ее от первоначального направления полета.

Угол отклонения может быть довольно большим (что должно учитываться на групповых охотах), фактически в сторону цели летят дробины только более или менее правильной формы. Степень деформации дробин можно оценить по отпечаткам дробинок на стенках и дне контейнера. У твердой дроби они значительно менее отчетливы.

Что же делать охотнику, у которого есть запас мягкой дроби и нет доступа к столичным магазинам? Выход существует и заключается он в пересыпании мягкой дроби крахмалом. Если заполнить малосжимаемым веществом (картофельный крахмал идеально подходит) промежутки между дробинками в снаряде, то они просто не смогут деформироваться. По моему опыту, такая мера позволяет практически полностью компенсировать мягкость дроби.

Кучность повысится на 20–30%, резкость тоже возрастет. Единственное, что пострадает, так это равномерность. Равномерность будет хуже, чем при использовании твердой дроби. Объяснить это могу только гипотетическим предположением о некоторой «склеиваемости» дробин крахмалом.

Пересыпка крахмалом особенно актуальна для крупных номеров дроби, именно с ними достигается наилучший результат. В моих записях зафиксированы результаты, когда кучность при использовании крахмала для мягкой дроби № 0 достигала 100%. То есть все дробины из патрона попадали в круг 750 мм на расстоянии 35 метров.

Крахмала нужно использовать много, чтобы дробь буквально тонула в нем, не забывая уменьшать навеску дроби на его вес для соблюдения соотношения порох — дробь. Если пересыпать крахмалом твердую дробь, то получим увеличение кучности всего на 5%. Такой результат хорошо соответствует теории о деформации дроби в снаряде.

Существует еще одна проблема, связанная с дробью, которую можно решить с помощью пристрелки ружья. Многие ружья имеют более высокую кучность боя при стрельбе определенными номерами дроби. Например, мое ТОЗ-34 значительно лучше бьет нолевкой, чем первым номером. А ТОЗ-87 моего брата, наоборот, предпочитает первый номер. Видимо, это связано с так называемой согласованностью дроби относительно канала ствола и чока.

Дробь, проходя через чок, претерпевает перестроение, при этом неизбежно возникает эффект расклинивания. Особенно это актуально для крупных номеров дроби и картечи. Этот эффект тем слабее, чем более плотно (без зазоров, куда могли бы вклиниться дробины следующего ряда) проходит дробь каждое конкретное сечение ствола и чока.

Из-за повышенного эффекта расклинивания не рекомендуется применять и смеси различных номеров дроби (хотя это можно использовать для «планового» снижения кучности).

Итак, какая должна быть дробь? Прежде всего, она должна быть твердая, иметь правильную форму и минимальный разброс в диаметре от дробины к дробине.

Владимир Серебреннииков 12 мая 2015 в 09:30

история дробей. История возникновения обыкновенных дробей

Одним из самых сложных разделов математики по сей день считаются дроби. История дробей насчитывает не одно тысячелетие. Умение делить целое на части возникло на территории древнего Египта и Вавилона. С годами усложнялись операции, проделываемые с дробями, менялась форма их записи. У каждого государства древнего мира были свои особенности во «взаимоотношениях» с этим разделом математики.

Что такое дробь?

Когда возникла необходимость делить целое на части без лишних усилий, тогда и появились дроби. История дробей неразрывна связана с решением утилитарных задач. Сам термин «дробь» имеет арабские корни и происходит от слова, обозначающего «ломать, разделять». С древних времен в этом смысле мало что изменилось. Современное определение звучит следующим образом: дробь — это часть или сумма частей единицы. Соответственно, примеры с дробями представляют собой последовательное выполнение математических операций с долями чисел.

Сегодня различают два способа их записи. Обыкновенные и десятичные дроби возникли в разное время: первые являются более древними.

Пришли из глубины веков

Впервые оперировать дробями начали на территории Египта и Вавилона. Подход математиков двух государств имел значительные отличия. Однако начало и там и там было положено одинаково. Первой дробью стала половина или 1/2. Дальше возникла четверть, треть и так далее. Согласно данным археологических раскопок, история возникновения дробей насчитывает около 5 тысяч лет. Впервые доли числа встречаются в египетских папирусах и на вавилонских глиняных табличках.

Древний Египет

Виды обыкновенных дробей сегодня включают в себя и так называемые египетские. Они представляют собой сумму нескольких слагаемых вида 1/n. Числитель — всегда единица, а знаменатель — натуральное число. Появились такие дроби, как ни трудно догадаться, в древнем Египте. При расчетах все доли старались записывать в виде таких сумм (например, 1/2 + 1/4 + 1/8). Отдельными обозначениями обладали только дроби 2/3 и 3/4, остальные разбивались на слагаемые. Существовали специальные таблицы, в которых доли числа представлялись в виде суммы.

Наиболее древнее из известных упоминаний такой системы встречается в Математическом папирусе Ринда, датируемом началом второго тысячелетия до нашей эры. Он включает таблицу дробей и математические задачи с решениями и ответами, представленными в виде сумм дробей. Египтяне умели складывать, делить и умножать доли числа. Дроби в долине Нила записывались с помощью иероглифов.

Представление доли числа в виде суммы слагаемых вида 1/n, характерное для древнего Египта, использовалось математиками не только этой страны. Вплоть до Средних веков египетские дроби применялись на территории Греции и других государств.

Развитие математики в Вавилоне

Иначе выглядела математика в Вавилонском царстве. История возникновения дробей здесь напрямую связана с особенностями системы счисления, доставшейся древнему государству в наследство от предшественника, шумеро-аккадской цивилизации. Расчетная техника в Вавилоне была удобнее и совершеннее, чем в Египте. Математика в этой стране решала гораздо больший круг задач.

Судить о достижениях вавилонян сегодня можно по сохранившимся глиняным табличкам, заполненным клинописью. Благодаря особенностям материала они дошли до нас в большом количестве. По мнению некоторых ученых, математики в Вавилоне раньше Пифагора открыли известную теорему, что, несомненно, свидетельствует о развитии науки в этом древнем государстве.

Дроби: история дробей в Вавилоне

Система счисления в Вавилоне была шестидесятеричной. Каждый новый разряд отличался от предыдущего на 60. Такая система сохранилась в современном мире для обозначения времени и величин углов. Дроби также были шестидесятеричными. Для записи использовали специальные значки. Как и в Египте, примеры с дробями содержали отдельные символы для обозначения 1/2, 1/3 и 2/3.

Вавилонская система не исчезла вместе с государством. Дробями, написанными в 60-тиричной системе, пользовались античные и арабские астрономы и математики.

Древняя Греция

История обыкновенных дробей мало чем обогатилась в древней Греции. Жители Эллады считали, что математика должна оперировать лишь целыми числами. Поэтому выражения с дробями на страницах древнегреческих трактатов практически не встречались. Однако определенный вклад в этот раздел математики внесли пифагорейцы. Они понимали дроби как отношения или пропорции, а единицу считали также неделимой. Пифагор с учениками построил общую теорию дробей, научился проводить все четыре арифметические операции, а также сравнение дробей путем приведения их к общему знаменателю.

Священная римская империя

Римская система дробей была связана с мерой веса, называемой «асс». Она делилась на 12 долей. 1/12 асса называлась унцией. Для обозначения дробей существовало 18 названий. Приведем некоторые из них:

  • семис — половина асса;

  • секстанте — шестая доля асса;

  • семиунция — пол-унции или 1/24 асса.

Неудобство такой системы заключалось в невозможности представить число в виде дроби со знаменателем 10 или 100. Римские математики преодолели трудность с помощью использования процентов.

Написание обыкновенных дробей

В Античности дроби уже писали знакомым нам образом: одно число над другим. Однако было одно существенное отличие. Числитель располагался под знаменателем. Впервые так писать дроби начали в древней Индии. Современный нам способ стали использовать арабы. Но никто из названных народов не применял горизонтальную черту для разделения числителя и знаменателя. Впервые она появляется в трудах Леонардо Пизанского, более известного как Фибоначчи, в 1202 году.

Китай

Если история возникновения обыкновенных дробей началась в Египте, то десятичные впервые появились в Китае. В Поднебесной империи их стали использовать примерно с III века до нашей эры. История десятичных дробей началась с китайского математика Лю Хуэя, предложившего использовать их при извлечении квадратных корней.

В III веке нашей эры десятичные дроби в Китае стали применяться при расчете веса и объема. Постепенно они все глубже начали проникать в математику. В Европе, однако, десятичные дроби стали использоваться гораздо позже.

Аль-Каши из Самарканда

Независимо от китайских предшественников десятичные дроби открыл астроном аль-Каши из древнего города Самарканда. Жил и трудился он в XV веке. Свою теорию ученый изложил в трактате «Ключ к арифметике», увидевшем свет в 1427 году. Аль-Каши предложил использовать новую форму записи дробей. И целая, и дробная часть теперь писались в одной строке. Для их разделения самаркандский астроном не использовал запятую. Он писал целое число и дробную часть разными цветами, используя черные и красные чернила. Иногда для разделения аль-Каши также применял вертикальную черту.

Десятичные дроби в Европе

Новый вид дробей начал появляться в трудах европейских математиков с XIII века. Нужно заметить, что с трудами аль-Каши, как и с изобретением китайцев они знакомы не были. Десятичные дроби появились в трудах Иордана Неморария. Затем их использовал уже в XVI веке Франсуа Виет. Французский ученый написал «Математический канон», в котором содержались тригонометрические таблицы. В них Виет использовал десятичные дроби. Для разделения целой и дробной части ученый применял вертикальную черту, а также разный размер шрифта.

Однако это были лишь частные случаи научного использования. Для решения повседневных задач десятичные дроби в Европе стали применяться несколько позже. Произошло это благодаря голландскому ученому Симону Стевину в конце XVI века. Он издал математический труд «Десятая» в 1585 году. В нем ученый изложил теорию использования десятичных дробей в арифметике, в денежной системе и для определения мер и весов.

Точка, точка, запятая

Стевин также не пользовался запятой. Он отделял две части дроби при помощи нуля, обведенного в круг.

Впервые запятая разделила две части десятичной дроби только в 1592 году. В Англии, однако, вместо нее стали применять точку. На территории США до сих пор десятичные дроби пишут именно таким образом.

Одним из инициаторов использования обоих знаков препинания для разделения целой и дробной части был шотландский математик Джон Непер. Он высказал свое предложение в 1616-1617 гг. Запятой пользовался и немецкий ученый Иоганн Кеплер.

Дроби на Руси

На русской земле первым математиком, изложившим деление целого на части, стал новгородский монах Кирик. В 1136 году он написал труд, в котором изложил метод «счисления лет». Кирик занимался вопросами хронологии и календаря. В своем труде он привел в том числе и деление часа на части: пятые, двадцать пятые и так далее доли.

Деление целого на части применялось при расчете размера налога в XV-XVII веках. Использовались операции сложения, вычитания, деления и умножения с дробными частями.

Само слово «дробь» появилось на Руси в VIII веке. Оно произошло от глагола «дробить, разделять на части». Для названия дробей наши предки использовали специальные слова. Например, 1/2 обозначалась как половина или полтина, 1/4 — четь, 1/8 — полчеть, 1/16 — полполчеть и так далее.

Полная теория дробей, мало чем отличающаяся от современной, была изложена в первом учебнике по арифметике, написанном в 1701 году Леонтием Филипповичем Магницким. «Арифметика» состояла из нескольких частей. О дробях подробно автор рассказывает в разделе «О числах ломаных или с долями». Магницкий приводит операции с «ломанными» числами, разные их обозначения.

Сегодня по-прежнему в числе самых сложных разделов математики называются дроби. История дробей также не была простой. Разные народы иногда независимо друг от друга, а иногда заимствуя опыт предшественников, пришли к необходимости введения, освоения и применения долей числа. Всегда учение о дробях вырастало из практических наблюдений и благодаря насущным проблемам. Необходимо было делить хлеб, размечать равные участки земли, высчитывать налоги, измерять время и так далее. Особенности применения дробей и математических операций с ними зависели от системы счисления в государстве и от общего уровня развития математики. Так или иначе, преодолев не одну тысячу лет, раздел алгебры, посвященный долям чисел, сформировался, развился и с успехом используется сегодня для самых разных нужд как практического характера, так и теоретического.

Что такое правильная дробь? Правильная и неправильная дробь: правила

С дробями мы сталкиваемся в жизни гораздо раньше, чем начинается их изучение в школе. Если разрезать целое яблоко пополам, то мы получим часть фрукта – ½. Разрежем ещё раз – будет ¼. Это и есть дроби. И все, казалось бы, просто. Для взрослого человека. Для ребенка же (а данную тему начинают изучать в конце младшей школы) абстрактные математические понятия ещё пугающе непонятны, и преподаватель должен доступно объяснить, что такое правильная дробь и неправильная, обыкновенная и десятичная, какие операции можно с ними совершать и, главное, для чего всё это нужно.

Какие бывают дроби

Знакомство с новой темой в школе начинается с обыкновенных дробей. Их легко узнать по горизонтальной черте, разделяющей два числа – сверху и снизу. Верхнее называется числителем, нижнее – знаменателем. Существует и строчный вариант написания неправильных и правильных обыкновенных дробей – через косую черту, например: ½, 4/9, 384/183. Такой вариант используется, когда высота строки ограничена и нет возможности применить «двухэтажную» форму записи. Почему? Да потому что она удобнее. Чуть позже мы в этом убедимся.

Помимо обыкновенных, существуют также десятичные дроби. Различить их очень просто: если в одном случае используется горизонтальная или наклонная черта, то в другом – запятая, разделяющая последовательности цифр. Посмотрим пример: 2,9; 163,34; 1,953. Мы намеренно воспользовались точкой с запятой в качестве разделителя, чтобы разграничить числа. Первое из них будет читаться так: «две целых, девять десятых».

Новые понятия

Вернемся к обыкновенным дробям. Они бывают двух видов.

Определение правильной дроби звучит следующим образом: это такая дробь, числитель которой меньше знаменателя. Почему это важно? Сейчас увидим!

У вас есть несколько яблок, разделенных на половинки. Всего – 5 частей. Как вы скажете: у вас «два с половиной» или «пять вторых» яблока? Конечно, первый вариант звучит естественнее, и при разговоре с друзьями мы воспользуемся им. А вот если потребуется посчитать, сколько фруктов достанется каждому, если в компании пять человек, мы запишем число 5/2 и разделим его на 5 – с точки зрения математики это будет нагляднее.

Итак, для наименования правильных и неправильных дробей правило таково: если в дроби можно выделить целую часть (14/5, 2/1, 173/16, 3/3), то она является неправильной. Если этого сделать нельзя, как в случае с ½, 13/16, 9/10, она будет правильной.

Основное свойство дроби

Если числитель и знаменатель дроби одновременно умножить или разделить на одно и то же число, её величина не изменится. Представьте: торт порезали на 4 равные части и дали вам одну. Такой же торт порезали на восемь частей и дали вам две. Не всё ли равно? Ведь ¼ и 2/8 – это одно и то же!

Сокращение

Авторы задач и примеров в учебниках по математике зачастую стремятся запутать учеников, предлагая громоздкие в написании дроби, которые на самом деле можно сократить. Вот пример правильной дроби: 167/334, который, казалось бы, выглядит очень «страшно». Но на самом деле мы можем записать его как ½. Число 334 делится на 167 без остатка – проделав такую операцию, мы получим 2.

Смешанные числа

Неправильную дробь можно представить в форме смешанного числа. Это когда целая часть вынесена вперед и записана на уровне горизонтальной черты. Фактически выражение принимает вид суммы: 11/2 = 5 + ½; 13/6 = 2 + 1/6 и так далее.

Чтобы вынести целую часть, нужно разделить числитель на знаменатель. Остаток от деления записать сверху, над чертой, а целую часть – перед выражением. Таким образом, мы получаем две структурные части: целые единицы + правильную дробь.

Можно осуществить и обратную операцию – для этого нужно целую часть умножить на знаменатель и прибавить полученное значение к числителю. Ничего сложного.

Умножение и деление

Как ни странно, умножать дроби проще, чем складывать. Всего-то и требуется — продлить горизонтальную черту: (2/3) * (3/5) = 2*3 / 3*5 = 2/5.

С делением тоже всё просто: нужно перемножить дроби крест-накрест: (7/8) / (14/15) = 7*15 / 8*14 = 15/16.

Сложение дробей

Что делать, если требуется осуществить сложение или вычитание дробей, а в знаменателе у них разные числа? Поступить так же, как с умножением, не получится – здесь следует понимать определение правильной дроби и её сущность. Нужно привести слагаемые к общему знаменателю, то есть в нижней части обеих дробей должны оказаться одинаковые числа.

Чтобы это осуществить, следует воспользоваться основным свойством дроби: умножить обе части на одно и то же число. Например, 2/5 + 1/10 = (2*2)/(5*2) + 1/10 = 5/10 = ½.

Как же выбрать, к какому знаменателю приводить слагаемые? Это должно быть минимальное число, кратное обоим числам, стоящим в знаменателях дробей: для 1/3 и 1/9 это будет 9; для ½ и 1/7 – 14, потому что меньшего значения, делящегося без остатка на 2 и 7, не существует.

Использование

Для чего нужны неправильные дроби? Ведь гораздо удобнее сразу выделить целую часть, получить смешанное число – и дело с концом! Оказывается, если требуется выполнить умножение или деление двух дробей, выгоднее воспользоваться именно неправильными.

Возьмем следующий пример: (2 + 3/17) / (37 / 68).

Казалось бы, сократить и вовсе нечего. Но что, если записать результат сложения в первых скобках в виде неправильной дроби? Посмотрите: (37/17) / (37/68)

Теперь всё встает на свои места! Запишем пример таким образом, чтобы всё стало очевидно: (37*68) / (17*37).

Сократим 37 в числителе и знаменателе и, наконец, разделим верхнюю и нижнюю части на 17. Вы же помните основное правило для правильной и неправильной дроби? Мы можем умножать и делить их на любое число, если делаем это одновременно для числителя и знаменателя.

Итак, получаем ответ: 4. Пример выглядел сложным, а ответ содержит всего одну цифру. В математике так часто происходит. Главное – не бояться и следовать простым правилам.

Распространенные ошибки

При осуществлении действий с дробями учащийся может легко совершить одну из популярных ошибок. Обычно они происходят из-за невнимательности, а иногда – из-за того, что изученный материал ещё не отложился в голове как следует.

Нередко сумма чисел, стоящая в числителе, вызывает желание сократить отдельные её компоненты. Допустим, в примере: (13 + 2) / 13, написанном без скобок (с горизонтальной чертой), многие ученики по неопытности зачеркивают 13 сверху и снизу. Но так делать нельзя ни в коем случае, ведь это грубая ошибка! Если бы вместо сложения стоял знак умножения, мы получили бы в ответе число 2. Но при осуществлении сложения никакие операции с одним из слагаемых не позволительны, только со всей суммой целиком.

Ещё ребята часто ошибаются при делении дробей. Возьмем две правильные несократимые дроби и разделим друг на друга: (5/6) / (25/33). Ученик может перепутать и записать результирующее выражение как (5*25) / (6*33). Но так бы получилось при умножении, а в нашем случае всё будет несколько иначе: (5*33) / (6*25). Сокращаем то, что возможно, и в ответе увидим 11/10. Получившуюся неправильную дробь запишем как десятичную — 1,1.

Скобки

Помните, что в любых математических выражениях порядок действий определяется приоритетом знаков операций и наличием скобок. При прочих равных отсчёт очередности выполнения действий происходит слева направо. Это актуально и для дробей – выражение в числителе или знаменателе рассчитывается строго по этому правилу.

Ведь что такое правильная дробь? Это результат деления одного числа на другое. Если они не делятся нацело, получается дробь – вот и всё.

Как записать дробь на компьютере

Поскольку стандартные средства не всегда позволяют создать дробь, состоящую из двух «ярусов», ученики порой идут на различные ухищрения. Например, копируют числители и знаменатели в графический редактор «Пейнт» и склеивают их воедино, рисуя между ними горизонтальную линию. Конечно, есть более простой вариант, который, кстати, предоставляет и массу дополнительных возможностей, которые станут полезны вам в будущем.

Откройте «Майкрософт Ворд». Одна из панелей в верхней части экрана носит называние «Вставка» — нажмите её. Справа, в той стороне, где расположены значки закрытия и сворачивания окна, есть кнопка «Формула». Это именно то, что нам нужно!

Если вы воспользуетесь данной функцией, на экране появится прямоугольная область, в которой можно использовать любые математические знаки, отсутствующие на клавиатуре, а также писать дроби в классическом виде. То есть разделяя числитель и знаменатель горизонтальной чертой. Вы даже можете удивиться, что такую правильную дробь настолько легко записать.

Изучайте математику

Если вы учитесь в 5-6 классе, то уже скоро знание математики (в том числе – умение работать с дробями!) потребуется во многих школьных предметах. Практически в любой задаче по физике, при измерении массы веществ в химии, в геометрии и тригонометрии без дробей никак не обойтись. Уже скоро вы научитесь вычислять всё в уме, даже не записывая выражения на бумаге, но будут появляться всё более и более сложные примеры. Поэтому выучите, что такое правильная дробь и как с ней работать, не отставайте по учебной программе, своевременно делайте домашние задания, и тогда вы преуспеете.

Сравнение дробей

Продолжаем изучать дроби. Сегодня мы поговорим об их сравнении. Тема интересная и полезная. Она позволит новичку почувствовать себя учёным в белом халате.

Суть сравнения дробей заключается в том, чтобы узнать какая из двух дробей больше или меньше.

Чтобы ответить на вопрос какая из двух дробей больше или меньше, пользуются операциями отношения, такими как больше (>) или меньше (<).

Ученые-математики уже позаботились о готовых правилах, позволяющие сразу ответить на вопрос какая дробь больше, а какая меньше. Эти правила можно смело применять.

Мы рассмотрим все эти правила и попробуем разобраться, почему происходит именно так.

Сравнение дробей с одинаковыми знаменателями

Дроби, которые нужно сравнить, попадаются разные. Самый удачный случай это когда у дробей одинаковые знаменатели, но разные числители. В этом случае применяют следующее правило:

Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше. И соответственно меньше будет та дробь, у которой числитель меньше.

Например, сравним дроби  и  и ответим, какая из этих дробей больше. Здесь одинаковые знаменатели, но разные числители. У дроби  числитель больше, чем у дроби  . Значит дробь   больше, чем . Так и отвечаем. Отвечать нужно с помощью значка больше (>)

Этот пример можно легко понять, если вспомнить про пиццы, которые разделены на четыре части. пиццы больше, чем пиццы:

Каждый согласится с тем, что первая пицца больше, чем вторая.


Сравнение дробей с одинаковыми числителями

Следующий случай, в который мы можем попасть, это когда числители дробей одинаковые, но знаменатели разные. Для таких случаев предусмотрено следующее правило:

Из двух дробей с одинаковыми числителями больше та дробь, у которой знаменатель меньше. И соответственно меньше та дробь, у которой знаменатель больше.

Например, сравним дроби и . У этих дробей одинаковые числители. У дроби знаменатель меньше, чем у дроби . Значит дробь больше, чем дробь . Так и отвечаем:

Этот пример можно легко понять, если вспомнить про пиццы, которые разделены на три и четыре части. пиццы больше, чем пиццы:

 

Каждый согласится с тем, что первая пицца больше, чем вторая.


Сравнение дробей с разными числителями и разными знаменателями

Нередко случается так, что приходиться сравнивать дроби с разными числителями и разными знаменателями.

Например, сравнить дроби  и . Чтобы ответить на вопрос, какая из этих дробей больше или меньше, нужно привести их к одинаковому (общему) знаменателю. Затем можно будет легко определить какая дробь больше или меньше.

Приведём дроби  и  к одинаковому (общему) знаменателю. Найдём наименьшее общее кратное (НОК) знаменателей обеих дробей. НОК знаменателей дробей  и  это число 6.

Теперь находим дополнительные множители для каждой дроби. Разделим НОК на знаменатель первой дроби . НОК это число 6, а знаменатель первой дроби это число 2. Делим 6 на 2, получаем дополнительный множитель 3. Записываем его над первой дробью:

Теперь найдём второй дополнительный множитель. Разделим НОК на знаменатель второй дроби . НОК это число 6, а знаменатель второй дроби это число 3. Делим 6 на 3, получаем дополнительный множитель 2. Записываем его над второй дробью:

Умножим дроби на свои дополнительные множители:

Мы пришли к тому, что дроби, у которых были разные знаменатели, превратились в дроби, у которых одинаковые знаменатели. А как сравнивать такие дроби мы уже знаем. Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше:

Правило правилом, а мы попробуем разобраться почему больше, чем . Для этого выделим целую часть в дроби . В дроби ничего выделять не нужно, поскольку эта дробь уже правильная.

После выделения целой части в дроби , получим следующее выражение:

Теперь можно легко понять, почему больше, чем .  Давайте нарисуем эти дроби в виде пицц:

2 целые пиццы и пиццы, больше чем пиццы.


Вычитание смешанных чисел. Сложные случаи.

Вычитая смешанные числа, иногда можно обнаружить, что всё идёт не так гладко, как хотелось бы. Часто случается так, что при решении какого-нибудь примера ответ получается не таким, каким он должен быть.

При вычитании чисел уменьшаемое должно быть больше вычитаемого. Только в этом случае будет получен нормальный ответ.

Например, 10−8=2

10 — уменьшаемое

8 — вычитаемое

2 — разность

Уменьшаемое 10 больше вычитаемого 8, поэтому мы получили нормальный ответ 2.

А теперь посмотрим, что будет если уменьшаемое окажется меньше вычитаемого. Пример 5−7=−2

5 — уменьшаемое

7 — вычитаемое

−2 — разность

В этом случае мы выходим за пределы привычных для нас чисел и попадаем в мир отрицательных чисел, где нам ходить пока рано, а то и опасно. Чтобы работать с отрицательными числами, нужна соответствующая математическая подготовка, которую мы ещё не получили.

Если при решении примеров на вычитание вы обнаружите, что уменьшаемое меньше вычитаемого, то можете пока пропустить такой пример. Работать с отрицательными числами допустимо только после их изучения.

С дробями ситуация та же самая. Уменьшаемое должно быть больше вычитаемого. Только в этом случае можно будет получить нормальный ответ. А чтобы понять больше ли уменьшаемая дробь, чем вычитаемая, нужно уметь сравнить эти дроби.

Например, решим пример .

Это пример на вычитание. Чтобы решить его, нужно проверить больше ли уменьшаемая дробь, чем вычитаемая. больше чем 

поэтому смело можем вернуться к примеру и решить его:

Теперь решим такой пример 

Проверяем больше ли уменьшаемая дробь, чем вычитаемая. Обнаруживаем, что она меньше:

В этом случае разумнее остановиться и не продолжать дальнейшее вычисление. Вернёмся к этому примеру, когда изучим отрицательные числа.

Смешанные числа перед вычитанием тоже желательно проверять. Например, найдём значение выражения .

Сначала проверим больше ли уменьшаемое смешанное число, чем вычитаемое. Для этого переведём смешанные числа в неправильные дроби:

Получили дроби с разными числителями и разными знаменателями. Чтобы сравнить такие дроби, нужно привести их к одинаковому (общему) знаменателю. Не будем подробно расписывать, как это сделать. Если испытываете затруднения, обязательно повторите действия с дробями.

После приведения дробей к одинаковому знаменателю, получаем следующее выражение:

Теперь нужно сравнить дроби и . Это дроби с одинаковыми знаменателями. Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше.

У дроби числитель больше, чем у дроби  . Значит дробь больше, чем дробь .

А это значит, что уменьшаемое больше, чем вычитаемое

А значит мы можем вернуться к нашему примеру и смело решить его:


Пример 3. Найти значение выражения

Проверим больше ли уменьшаемое, чем вычитаемое.

Переведём смешанные числа в неправильные дроби:

Получили дроби с разными числителями и разными знаменателями. Приведем данные дроби к одинаковому (общему) знаменателю:

Теперь сравним дроби   и . У дроби числитель меньше, чем у дроби , значит дробь меньше, чем дробь

А это значит, что и уменьшаемое меньше, чем вычитаемое

А это гарантировано приведёт нас в мир отрицательных чисел. Поэтому разумнее остановиться на этом месте и не продолжать вычисление. Продолжим его, когда изучим отрицательные числа.


Пример 4. Найти значение выражения

Проверим больше ли уменьшаемое, чем вычитаемое.

Переведём смешанные числа в неправильные дроби:

Получили дроби с разными числителями и разными знаменателями. Приведем их к одинаковому (общему) знаменателю:

Теперь нужно сравнить дроби    и  . У дроби  числитель больше, чем у дроби . Значит дробь  больше, чем дробь .

А это значит, что уменьшаемое больше, чем вычитаемое

Поэтому мы смело можем продолжить вычисление нашего примера:

Сначала мы получили ответ . Эту дробь мы сократили на 2 и получили дробь , но такой ответ нас тоже не устроил и мы выделили целую часть в этом ответе. В итоге получили ответ .


Задания для самостоятельного решения

Задание 1. Сравнить дроби:

Решение:

Задание 2. Сравнить дроби:

Решение:

Задание 3. Сравнить дроби:

Решение:

Задание 4. Сравнить дроби:

Решение:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Навигация по записям

Действия с дробями

Дроби можно складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой. В принципе, всё что можно делать с обычными числами, можно делать и с дробями.

Сложение дробей с одинаковыми знаменателями

Сложение дробей бывает двух видов:

  1. Сложение дробей с одинаковыми знаменателями;
  2. Сложение дробей с разными знаменателями.

Сначала изýчим сложение дробей с одинаковыми знаменателями. Тут всё просто. Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменения.

Например, слóжим дроби    и  . Складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если к   пиццы прибавить пиццы, то получится пиццы:


Пример 2. Сложить дроби и .

Опять же складываем числители, а знаменатель оставляем без изменения:

В ответе получилась неправильная дробь .  Если наступает конец задачи, то от неправильных дробей принято избавляться. Чтобы избавится от неправильной дроби, нужно выделить в ней целую часть. В нашем случае целая часть выделяется легко — два разделить на два будет один:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на две части. Если к пиццы прибавить еще пиццы, то получится одна целая пицца:


Пример 3. Сложить дроби    и  .

Опять же складываем числители, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если к пиццы прибавить ещё пиццы, то получится пиццы:


Пример 4. Найти значение выражения 

Этот пример решается точно также, как и предыдущие. Числители необходимо сложить, а знаменатель оставить без изменения:

Попробуем изобразить наше решение с помощью рисунка. Если к  пиццы прибавить  пиццы и ещё прибавить  пиццы, то получится 1 целая и ещё  пиццы.

Как видите в сложении дробей с одинаковыми знаменателями нет ничего сложного. Достаточно понимать следующие правила:

  1. Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменения;
  2. Если в ответе получилась неправильная дробь, то нужно выделить в ней целую часть.

Сложение дробей с разными знаменателями

Теперь научимся складывать дроби с разными знаменателями. Когда складывают дроби, знаменатели этих дробей должны быть одинаковыми. Но одинаковыми они бывают не всегда.

Например, дроби   и  сложить можно, поскольку у них одинаковые знаменатели.

А вот дроби    и    сразу сложить нельзя, поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Существует несколько способов приведения дробей к одинаковому знаменателю. Сегодня мы рассмотрим только один из них, поскольку остальные способы могут показаться сложными для начинающего.

Суть этого способа заключается в том, что сначала ищется наименьшее общее кратное (НОК) знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель. Аналогично поступают и со второй дробью — НОК делят на знаменатель второй дроби и получают второй дополнительный множитель.

Затем числители и знаменатели дробей умножаются на свои дополнительные множители. В результате этих действий, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем.

Пример 1. Сложим дроби  и 

У этих дробей разные знаменатели, поэтому нужно привести их к одинаковому (общему) знаменателю.

В первую очередь находим наименьшее общее кратное знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 2. Наименьшее общее кратное этих чисел равно 6

НОК (2 и 3) = 6

Теперь возвращаемся к дробям  и . Сначала разделим НОК на знаменатель первой дроби и получим первый дополнительный множитель. НОК это число 6, а знаменатель первой дроби это число 3. Делим 6 на 3, получаем 2.

Полученное число 2 это первый дополнительный множитель. Записываем его к первой дроби. Для этого делаем небольшую косую линию над дробью и записываем над ней найденный дополнительный множитель:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби и получаем второй дополнительный множитель. НОК это число 6, а знаменатель второй дроби — число 2. Делим 6 на 2, получаем 3.

Полученное число 3 это второй дополнительный множитель. Записываем его ко второй дроби. Опять же делаем небольшую косую линию над второй дробью и записываем над ней найденный дополнительный множитель:

Теперь у нас всё готово для сложения. Осталось умножить числители и знаменатели дробей на свои дополнительные множители:

Посмотрите внимательно к чему мы пришли. Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Таким образом, пример завершается.  К  прибавить  получается .

Попробуем изобразить наше решение с помощью рисунка. Если к  пиццы прибавить  пиццы, то получится одна целая пицца и еще одна шестая пиццы:

Приведение дробей к одинаковому (общему) знаменателю также можно изобразить с помощью рисунка. Приведя дроби  и  к общему знаменателю, мы получили дроби  и . Эти две дроби будут изображаться теми же кусками пицц. Различие будет лишь в том, что в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю).

Первый рисунок изображает дробь  (четыре кусочка из шести), а второй рисунок изображает дробь  (три кусочка из шести). Сложив эти кусочки мы получаем  (семь кусочков из шести). Эта дробь неправильная, поэтому мы выделили в ней целую часть. В результате получили  (одну целую пиццу и еще одну шестую пиццы).

Отметим, что мы с вами расписали данный пример слишком подробно. В учебных заведениях не принято писать так развёрнуто. Нужно уметь быстро находить НОК обоих знаменателей и дополнительные множители к ним, а также быстро умножать найденные дополнительные множители на свои числители и знаменатели. Находясь в школе, данный пример нам пришлось бы записать следующим образом:

Но есть и обратная сторона медали. Если на первых этапах изучения математики не делать подробных записей, то начинают появляться вопросы рода «а откуда вон та цифра?», «почему дроби вдруг превращаются совсем в другие дроби?«.

Поэтому на первых этапах советуем записывать каждую мелочь. Хвастаться можно лишь в будущем, когда будут усвоены азы.

Чтобы легче было складывать дроби с разными знаменателями, можно воспользоваться следующей пошаговой инструкцией:

  1. Найти НОК знаменателей дробей;
  2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби;
  3. Умножить числители и знаменатели дробей на свои дополнительные множители;
  4. Сложить дроби, у которых одинаковые знаменатели;
  5. Если в ответе получилась неправильная дробь, то выделить её целую часть;

Пример 2. Найти значение выражения .

Воспользуемся инструкцией, которая приведена выше.

Шаг 1. Найти НОК знаменателей дробей

Находим НОК знаменателей обеих дробей. Знаменатели дробей это числа 2, 3 и 4

Шаг 2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби

Делим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби это число 2. Делим 12 на 2, получаем 6. Получили первый дополнительный множитель 6. Записываем его над первой дробью:

Теперь делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби это число 3. Делим 12 на 3, получаем 4. Получили второй дополнительный множитель 4. Записываем его над второй дробью:

Теперь делим НОК на знаменатель третьей дроби. НОК это число 12, а знаменатель третьей дроби это число 4. Делим 12 на 4, получаем 3. Получили третий дополнительный множитель 3. Записываем его над третьей дробью:

Шаг 3. Умножить числители и знаменатели дробей на свои дополнительные множители

Умножаем числители и знаменатели на свои дополнительные множители:

Шаг 4. Сложить дроби у которых одинаковые знаменатели

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби, у которых одинаковые (общие) знаменатели. Осталось сложить эти дроби. Складываем:

Сложение не поместилось на одной строке, поэтому мы перенесли оставшееся выражение на следующую строку. Это допускается в математике. Когда выражение не помещается на одну строку, его переносят на следующую строку, при этом надо обязательно поставить знак равенства (=) на конце первой строки и в начале новой строки. Знак равенства на второй строке говорит о том, что это продолжение выражения, которое было на первой строке.

Шаг 5. Если в ответе получилась неправильная дробь, то выделить в ней целую часть

У нас в ответе получилась неправильная дробь. Мы должны выделить у неё целую часть. Выделяем:

Получили ответ


Вычитание дробей с одинаковыми знаменателями

Вычитание дробей бывает двух видов:

  1. Вычитание дробей с одинаковыми знаменателями
  2. Вычитание дробей с разными знаменателями

Сначала изучим вычитание дробей с одинаковыми знаменателями.

Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения.

Например, найдём значение выражения  . Чтобы решить этот пример, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения. Так и сделаем:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если от  пиццы отрезать   пиццы, то получится  пиццы:


Пример 2. Найти значение выражения .

Опять же из числителя первой дроби вычитаем числитель второй дроби, а знаменатель оставляем без изменения:

Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если от  пиццы отрезать   пиццы, то получится  пиццы:


Пример 3. Найти значение выражения

Этот пример решается точно также, как и предыдущие. Из числителя первой дроби нужно вычесть числители остальных дробей:

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Как видите в вычитании дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила:

  1. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменения;
  2. Если в ответе получилась неправильная дробь, то нужно выделить в  ней целую часть.

Вычитание дробей с разными знаменателями

Теперь научимся вычитать дроби у которых разные знаменатели. Когда вычитают дроби их знаменатели должны быть одинаковыми. Но одинаковыми они бывают не всегда.

Например, от дроби  можно вычесть дробь , поскольку у этих дробей  одинаковые знаменатели. А вот от дроби  нельзя вычесть дробь , поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Общий знаменатель находят по тому же принципу, которым мы пользовались при сложении дробей с разными знаменателями. В первую очередь находят НОК знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель, который записывается над первой дробью. Аналогично НОК делят на знаменатель второй дроби и получают второй дополнительный множитель, который записывается над второй дробью.

Затем дроби умножаются на свои дополнительные множители. В результате этих операций, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем.

Пример 1. Найти значение выражения:

У этих дробей разные знаменатели, поэтому нужно привести их к одинаковому (общему) знаменателю.

Сначала находим НОК знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 4. Наименьшее общее кратное этих чисел равно 12

НОК (3 и 4) = 12

Теперь возвращаемся к дробям  и

Найдём дополнительный множитель для первой дроби. Для этого разделим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби — число 3. Делим 12 на 3, получаем 4. Записываем четвёрку над первой дробью:

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби — число 4. Делим 12 на 4, получаем 3. Записываем тройку над второй дробью:

Теперь у нас всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Получили ответ

Попробуем изобразить наше решение с помощью рисунка. Если от  пиццы отрезать  пиццы, то получится  пиццы

Это подробная версия решения. Находясь в школе, нам пришлось бы решить этот пример покороче. Выглядело бы такое решение следующим образом:

Приведение дробей  и  к общему знаменателю также может быть изображено с помощью рисунка. Приведя эти дроби к общему знаменателю, мы получили дроби  и . Эти дроби будут изображаться теми же кусочками пицц, но в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю):

Первый рисунок изображает дробь  (восемь кусочков из двенадцати), а второй рисунок — дробь  (три кусочка из двенадцати). Отрезав от восьми кусочков три кусочка мы получаем пять кусочков из двенадцати. Дробь  и описывает эти пять кусочков.


Пример 2. Найти значение выражения

У этих дробей разные знаменатели, поэтому сначала нужно привести их к одинаковому (общему) знаменателю.

Найдём НОК знаменателей этих дробей.

Знаменатели дробей это числа 10, 3 и 5. Наименьшее общее кратное этих чисел равно 30

НОК (10, 3, 5) = 30

Теперь находим дополнительные множители для каждой дроби. Для этого разделим НОК на знаменатель каждой дроби.

Найдём дополнительный множитель для первой дроби. НОК это число 30, а знаменатель первой дроби — число 10. Делим 30 на 10, получаем первый дополнительный множитель 3. Записываем его над первой дробью:

Теперь находим дополнительный множитель для второй дроби. Разделим НОК на знаменатель второй дроби. НОК это число 30, а знаменатель второй дроби — число 3. Делим 30 на 3, получаем второй дополнительный множитель 10. Записываем его над второй дробью:

Теперь находим дополнительный множитель для третьей дроби. Разделим НОК на знаменатель третьей дроби. НОК это число 30, а знаменатель третьей дроби — число 5. Делим 30 на 5, получаем третий дополнительный множитель 6. Записываем его над третьей дробью:

Теперь всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли  к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые (общие) знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример.

Продолжение примера не поместится на одной строке, поэтому переносим продолжение на следующую строку. Не забываем про знак равенства (=) на новой строке:

В ответе получилась правильная дробь, и вроде бы нас всё устраивает, но она слишком громоздка и некрасива. Надо бы сделать её проще. А что можно сделать? Можно сократить эту дробь.

Чтобы сократить дробь , нужно разделить её числитель и знаменатель на наибольший общий делитель (НОД) чисел 20 и 30.

Итак, находим НОД чисел 20 и 30:

Теперь возвращаемся к нашему примеру и делим числитель и знаменатель дроби  на найденный НОД, то есть на 10

Получили ответ


Умножение дроби на число

Чтобы умножить дробь на число, нужно числитель данной дроби умножить на это число, а знаменатель оставить без изменений.

Пример 1. Умножить дробь  на число 1.

Умножим числитель дроби на число 1

Запись можно понимать, как взять половину 1 раз. К примеру, если пиццы взять 1 раз, то получится  пиццы

Из законов умножения мы знаем, что если множимое и множитель поменять местами, то произведение не изменится. Если выражение , записать как , то произведение по прежнему будет равно . Опять же срабатывает правило перемножения целого числа и дроби:

Эту запись можно понимать, как взятие половины от единицы. К примеру, если имеется 1 целая пицца и мы возьмем от неё половину, то у нас окажется  пиццы:


Пример 2. Найти значение выражения

Умножим числитель дроби на 4

В ответе получилась неправильная дробь. Выделим в ней целую часть:

Выражение  можно понимать, как взятие двух четвертей 4 раза. К примеру, если  пиццы взять 4 раза, то получится две целые пиццы

А если поменять множимое и множитель местами, то получим выражение . Оно тоже будет равно 2. Это выражение можно понимать, как взятие двух пицц от четырех целых пицц:

Число, которое умножается на дробь, и знаменатель дроби разрешается сокращать, если они имеют общий делитель, бóльший единицы.

Например, выражение можно вычислить двумя способами.

Первый способ. Умножить число 4 на числитель дроби, а знаменатель дроби оставить без изменений:

Второй способ. Умножаемую четвёрку и четвёрку, находящуюся в знаменателе дроби , можно сократить. Сократить эти четвёрки можно на 4, поскольку наибольший общий делитель для двух четвёрок есть сама четвёрка:

Получился тот же результат 3. После сокращения четвёрок, на их месте образуются новые числа: две единицы. Но перемножение единицы с тройкой, и далее деление на единицу ничего не меняет. Поэтому решение можно записать покороче:

Сокращение может быть выполнено даже тогда, когда мы решили воспользоваться первым способом, но на этапе перемножения числа 4 и числителя 3 решили воспользоваться сокращением:

А вот к примеру выражение можно вычислить только первым способом — умножить число 7 на числитель дроби , а знаменатель оставить без изменений:

Связано это с тем, что число 7 и знаменатель дроби не имеют общего делителя, бóльшего единицы, и соответственно не сокращаются.

Некоторые ученики по ошибке сокращают умножаемое число и числитель дроби. Делать этого нельзя. Например, следующая запись не является правильной:

Сокращение дроби подразумевает, что и числитель и знаменатель будет разделён на одно и тоже число. В ситуации с выражением деление выполнено только в числителе, поскольку записать  это всё равно, что записать . Видим, что деление выполнено только в числителе, а в знаменателе никакого деления не происходит.


Умножение дробей

Чтобы перемножить дроби, нужно перемножить их числители и знаменатели. Если в ответе получится неправильная дробь, нужно выделить в ней целую часть.

Пример 1. Найти значение выражения .

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

Получили ответ . Желательно сократить данную дробь. Дробь можно сократить на 2. Тогда окончательное решение примет следующий вид:

Выражение  можно понимать, как взятие  пиццы от половины пиццы. Допустим, у нас есть половина пиццы:

Как взять от этой половины две третьих? Сначала нужно поделить эту половину на три равные части:

И взять от этих трех кусочков два:

У нас получится  пиццы. Вспомните, как выглядит пицца, разделенная на три части:

Один кусок от этой пиццы и взятые нами два кусочка будут иметь одинаковые размеры:

Другими словами, речь идет об одном и том же размере пиццы. Поэтому значение выражения  равно 


Пример 2. Найти значение выражения

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась неправильная дробь. Выделим в ней целую часть:


Пример 3. Найти значение выражения 

Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби:

В ответе получилась правильная дробь, но будет хорошо, если её сократить. Чтобы сократить эту дробь, нужно числитель и знаменатель данной дроби разделить на наибольший общий делитель (НОД) чисел 105 и 450.

Итак, найдём НОД чисел 105 и 450:

Теперь делим числитель и знаменатель нашего ответа на НОД, который мы сейчас нашли, то есть на 15


Представление целого числа в виде дроби

Любое целое число можно представить в виде дроби. Например, число 5 можно представить как  . От этого пятёрка своего значения не поменяет, поскольку выражение    означает «число пять разделить на единицу», а это, как известно равно пятёрке:


Обратные числа

Сейчас мы познакомимся с очень интересной темой в математике. Она называется «обратные числа».

Определение. Обратным к числу a называется число, которое при умножении на a даёт единицу.

Давайте подставим в это определение вместо переменной a число 5 и попробуем прочитать определение:

Обратным к числу 5 называется число, которое при умножении на 5 даёт единицу.

Можно ли найти такое число, которое при умножении на 5, даёт единицу? Оказывается можно. Представим пятёрку в виде дроби:

Затем умножить эту дробь на саму себя, только поменяем местами числитель и знаменатель. Другими словами, умножим дробь на саму себя, только перевёрнутую:

Что получится в результате этого? Если мы продолжим решать этот пример, то получим единицу:

Значит обратным к числу 5, является число , поскольку при умножении 5 на получается единица.

Обратное число можно найти также для любого другого целого числа.

Примеры:

  • обратным числа 2 является дробь
  • обратным  числа 3 является дробь
  • обратным числа 4 является дробь

Найти обратное число можно также для любой другой дроби. Для этого достаточно перевернуть её.

Примеры:


Деление дроби на число

Допустим, у нас имеется половина пиццы:

Разделим её поровну на двоих. Сколько пиццы достанется каждому?

Видно, что после разделения половины пиццы получилось два равных кусочка, каждый из которых составляет  пиццы. Значит каждому достанется по  пиццы.

Деление дробей выполняется с помощью обратных чисел. Обратные числа позволяют заменить деление умножением.

Чтобы разделить дробь на число, нужно эту дробь умножить на число, обратное делителю.

Пользуясь этим правилом, запишем деление нашей половины пиццы на две части.

Итак, требуется разделить дробь  на число 2. Здесь делимым является дробь , а делителем число 2.

Чтобы разделить дробь  на число 2, нужно эту дробь умножить на число, обратное делителю 2. Обратное делителю 2 это дробь . Значит нужно умножить  на 

Получили ответ . Значит при делении половины на две части получается четверть.

Попробуем понять механизм этого правила. Для этого рассмотрим следующий простейший пример. Пусть у нас имеется одна целая пицца:

Умножим её на 2. То есть повторим её два раза (или возьмём два раза). В результате будем иметь две пиццы:

Теперь угостим этими пиццами двоих друзей. То есть разделим две пиццы на 2. Тогда каждому достанется по одной пицце:

Разделить две пиццы на 2 это всё равно, что взять половину от этих пицц, то есть умножить число 2 на дробь 

В обоих случаях получился один и тот же результат.

Тоже самое происходило, когда мы делили половину пиццы на две части. Чтобы разделить  на 2, мы умножили эту дробь на число, обратное делителю 2. А обратное делителю 2 это дробь 


Пример 2. Найти значение выражения 

Умножим первую дробь на число, обратное делителю:

Допустим, имеется четверть пиццы и нужно разделить её на двоих:

Если разделить эту четверть на две части, то каждая получившаяся часть будет одной восьмой частью целой пиццы:


Заменять деление умножением можно не только при работе с дробями, но и с обычными числами. Например, все мы знаем, что 10 разделить на 2 будет 5

10 : 2 = 5

Заменим в этом примере деление умножением. Чтобы разделить число 10 на число 2, можно умножить число 10 на число, обратное числу 2. А обратное числу 2 это дробь 

Как видно результат не изменился. Мы снова получили ответ 5.

Можно сделать вывод, что деление можно заменять умножением при условии, что вместо делителя будет подставлено обратное ему число.

Пример 3. Найти значение выражения

Умножим первую дробь на число, обратное делителю. Обратное делителю число это дробь 

Допустим, имелось пиццы:

Как разделить такую пиццу на шестерых? Если каждый из трех кусков разделить пополам, то можно получить 6 равных кусков

Эти шесть кусков являются шестью кусками из двенадцати. А один из этих кусков составляет . Поэтому при делении  на 6 получается 


Деление числа на дробь

Правило деления числа на дробь такое же, как и правило деления дроби на число.

Чтобы разделить число на дробь, нужно умножить это число на дробь, обратную делителю.

Например, разделим число 1 на .

Чтобы разделить число 1 на , нужно это число 1 умножить на дробь, обратную дроби . А обратная дроби  это дробь 

Выражение  можно понимать, как определение количества половин в одной целой пицце. Допустим, имеется одна целая пицца:

Если зададим вопрос «сколько раз половина содержится в этой пицце», то ответом будет 2. Действительно, половина содержится в одной целой пицце два раза

 


Пример 2. Найти значение выражение 

Умножим число 2 на дробь, обратную делителю. А обратная делителю дробь это дробь 

Допустим, у нас имеются две целые пиццы:

Если зададим вопрос «сколько раз половина содержится в двух пиццах», то ответом будет 4. Действительно, половина содержится в двух пиццах четыре раза:


Деление дробей

Чтобы разделить дробь на дробь, нужно первую дробь умножить на дробь, обратную второй.

Например, разделим  на 

Чтобы разделить  на , нужно  умножить на дробь, обратную дроби . А обратная дроби  это дробь 

Допустим, имеется половина пиццы:

Если зададим вопрос «сколько раз четверть пиццы содержится в этой половине», то ответом будет 2. Действительно, четверть пиццы содержится в половине пиццы два раза:


Пример 1. Найти значение выражения 

Умножаем первую дробь на дробь, обратную второй. Грубо говоря, умножаем первую дробь на перевёрнутую вторую:


Пример 2. Найти значение выражения

Умножаем первую дробь на дробь обратную второй:


Здесь советуем остановиться и потренироваться. Решите несколько примеров, приведенных ниже. Можете использовать материалы сайта, как справочник. Это позволит вам научиться работать с литературой.

Каждая следующая тема будет более сложной, поэтому нужно тренироваться.

Задания для самостоятельного решения:

Задание 1. Найдите значение выражения:

Решение:

Задание 2. Найдите значение выражения:

Решение:

Задание 3. Найдите значение выражения:

Решение:

Задание 4. Найдите значение выражения:

Решение:

Задание 5. Найдите значение выражения:

Решение:

Задание 6. Найдите значение выражения:

Решение:

Задание 7. Найдите значение выражения:

Решение:

Задание 8. Найдите значение выражения:

Решение:

Задание 9. Найдите значение выражения:

Решение:

Задание 10. Найдите значение выражения:

Решение:

Задание 11. Найдите значение выражения:

Решение:

Задание 12. Найдите значение выражения:

Решение:

Задание 13. Найдите значение выражения:

Решение:

Задание 14. Найдите значение выражения:

Решение:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Навигация по записям

Выбираем дробь. Таблица номеров дроби и советы по выбору оптимального дробового патрона

Покупая дробовой патрон важно знать не только массу заряда, а еще и размер дроби. Предлагаем взглянуть в таблицу, чтобы легко разобраться в ассортименте дробовых патронов.

Таблица номеров дроби и размеры дробин в миллиметрах:

Номер
дроби
109876543210000000000
Размер
дробин,
мм
1,752,002,252,502,753,003,253,503,754,004,254,504,755,00

Номер дроби рассчитывается как 5 мм для №0000 с уменьшением через 0.25 мм.

Дробь в самым высоким номером — самая мелкая. Не перепутайте! Это картечь у нас, чем больше цифра – тем крупнее картечина, с дробью все наоборот.

Чтобы разобраться, какая дробь для какой охоты нужна – смотрите в рекомендационный лист от компании Тахо (украинский производитель патронов и аксессуаров):

Что касается тренировок, то оптимально брать дробь номер 7-9. Зачастую, это самые дешевые боеприпасы. При этом масса заряда пусть лучше будет минимальной (24 или 28 грамм для 12 калибра). Этого достаточно для поражения мишеней, а вот отдача при выстреле будет существенно комфортней, чем у «полновесных» патронов с массой заряда в 32 или 36 грамм (для 12 калибра).

Для защиты дома лучше выбирать мелкую дробь (7-9) в теплую пору года, и более крупную (3-5) в холодную. Это обусловлено тем, что мелкая дробь причинит не серьезные ранения, но грабителя точно остановит. Соответственно, когда грабитель будет одет в зимнюю куртку, то мелкая дробь может даже не пробить одежду, поэтому в холодную пору лучше выбрать патроны с большим размером дробин.

Навеска при этом, должна быть максимальная, чтобы с большей вероятностью поразить злоумышленника. Здесь уже о комфортной отдаче речи быть не может.

Кстати, в Украине продаются травматические патроны для гладкоствольного оружия. Их производит НПП Еколог. В ассортименте есть резиновые пули (такими Беркут стрелял в протестующих на Майдане 2013/14) и резиновая картечь. Они продаются в большинстве оружейных магазинов, а их использование абсолютно легально.

Травматические патроны для гладкоствольного ружья с резиновой картечью

Единственное, что их эффективность весьма сомнительна. Если уж решились использовать «резину», то держите в кармане еще и дробовой патрон. На случай, если «резинка» не остановит нападающего.

Вконтакте

Facebook

Twitter

LiveJournal

LinkedIn

Фракция выброса

Что такое фракция выброса и ее связь с сердечной недостаточностью?

Что такое фракция выброса?

Фракция выброса (ФВ) указывает на то, насколько хорошо ваш левый желудочек (или правый желудочек) перекачивает кровь при каждом ударе сердца. Чаще всего ФВ относится к количеству крови, откачиваемой из левого желудочка при каждом его сокращении. Левый желудочек — это основная насосная камера сердца.

Ваш EF выражается в процентах. ФВ ниже нормы может быть признаком сердечной недостаточности. Если у вас сердечная недостаточность и ФВ ниже нормы (пониженная), ваша ФВ помогает врачу узнать, насколько серьезно ваше состояние.

Фракция выброса левого желудочка (LVEF) — это показатель того, сколько крови откачивается из левого желудочка сердца (основная насосная камера) при каждом сокращении.

Фракция выброса правого желудочка (RVEF) — это показатель того, сколько крови перекачивается из правой части сердца в легкие для получения кислорода.

В большинстве случаев термин «фракция выброса» относится к фракции выброса левого желудочка.

Как работает сердце

Здоровое сердце сокращается от 60 до 80 раз в минуту, перекачивая кровь по всему телу. Правая и левая стороны сердца работают вместе. Кровь с низким содержанием кислорода сначала попадает в правую верхнюю камеру (правое предсердие) сердца. Кровь течет из правого предсердия в нижнюю камеру (правый желудочек) через открытый трикуспидальный клапан. Кровь проходит через клапан, прежде чем покинуть каждую камеру сердца.В вашем сердце четыре клапана; клапаны гарантируют, что кровь течет через ваше сердце только в одном направлении. Затем кровь проходит через легочную артерию в легкие, где добавляется кислород.

Богатая кислородом кровь возвращается в левую часть сердца. Кровь течет из левой верхней камеры (левое предсердие) в нижнюю камеру (левый желудочек) через открытый митральный клапан. Из левого желудочка кровь перекачивается в сеть артерий (кровеносных сосудов), которые несут кровь по всему телу.

Узнайте больше о кровотоке через сердце.

Как измеряется EF?

Фракцию выброса можно измерить с помощью:

  • Эхокардиограмма (эхо) — это наиболее распространенный способ проверки EF
  • Магнитно-резонансная томография (МРТ) сердца
  • Ядерно-медицинское сканирование (MUGA) сердца; также называется ядерным стресс-тестом

Почему важно знать свой EF

Если у вас сердечное заболевание, вам и вашему врачу важно знать фракцию выброса.Ваш EF может помочь вашему врачу определить лучший курс лечения для вас. Измерение вашего EF также помогает вашей медицинской бригаде проверить, насколько хорошо работает наше лечение.

Спросите своего врача, как часто вам следует проверять EF. Как правило, вам следует измерять EF при первом диагнозе сердечного заболевания и по мере необходимости при изменении вашего состояния.

Что означают цифры?

Если у вас сердечная недостаточность, это означает, что ваше сердце не работает так, как должно.Нормальная фракция выброса левого желудочка (ФВЛЖ) колеблется от 55% до 70%. Например, ФВЛЖ 65% означает, что 65% от общего количества крови в левом желудочке откачивается с каждым ударом сердца. Ваш EF может повышаться и понижаться в зависимости от состояния вашего сердца и эффективности вашего лечения.

  • Фракция выброса (ФВ)%: от 55% до 70%
    • Насосная способность сердца: нормальная
    • Уровень сердечной недостаточности / влияние на накачивание: сердечная функция может быть нормальной или у вас может быть сердечная недостаточность с сохраненной EF (HF-pEF).
  • Фракция выброса (ФВ)%: от 40% до 54% ​​
    • Насосная способность сердца: немного ниже нормы
    • Уровень сердечной недостаточности / влияние на накачивание: меньше крови доступно, поэтому меньше крови выбрасывается из желудочков. Остальной части тела доступно меньшее, чем обычно, количество богатой кислородом крови. У вас может не быть симптомов.
  • Фракция выброса (ФВ)%: от 35% до 39%
    • Насосная способность сердца: умеренно ниже нормы
    • Уровень сердечной недостаточности / влияние на накачивание: легкая сердечная недостаточность со сниженным EF (HF-rEF).
  • Фракция выброса (EF)%: менее 35%
    • Насосная способность сердца: значительно ниже нормы
    • Уровень сердечной недостаточности / влияние на сцеживание: от умеренного до тяжелого HF-rEF. Тяжелая HF-rEF увеличивает риск опасных для жизни сердечных сокращений и сердечной диссинхронии / десинхронизации (правый и левый желудочки не работают одновременно).

Типы сердечной недостаточности

Существует два основных типа сердечной недостаточности.

Сердечная недостаточность с сохраненной функцией левого желудочка (HF-pEF). Если у вас HF-pEF, ваш EF находится в пределах нормы, потому что ваш левый желудочек все еще работает правильно. Ваш врач измерит ваш EF и может проверить сердечные клапаны и жесткость мышц, чтобы определить, насколько серьезна ваша сердечная недостаточность.

** Сердечная недостаточность с пониженной функцией левого желудочка (HF-rEF). ** Если у вас ФВ менее 35%, у вас повышается риск угрожающих жизни нерегулярных сердечных сокращений, которые могут вызвать внезапную остановку сердца / смерть .Если ваш EF ниже 35%, ваш врач может поговорить с вами о лечении с помощью имплантируемого кардиовертера-дефибриллятора (ICD) или сердечной ресинхронизирующей терапии (CRT). Ваш врач может также порекомендовать конкретные лекарства или другие методы лечения, в зависимости от степени сердечной недостаточности. Менее распространенные варианты лечения включают трансплантацию сердца или вспомогательное устройство желудочков (VAD). Если качество вашей жизни очень низкое или ваш врач сказал вам, что ваше состояние очень тяжелое, спросите о других возможных методах лечения.

Ресурсы

Последний раз проверял медицинский работник Cleveland Clinic 29.04.2019.

Получите полезную, полезную и актуальную информацию о здоровье и благополучии

е Новости

Клиника Кливленда — некоммерческий академический медицинский центр.Реклама на нашем сайте помогает поддерживать нашу миссию. Мы не поддерживаем продукты или услуги, не принадлежащие Cleveland Clinic. Политика

Нормальный диапазон, низкий уровень и лечение

Что такое фракция выброса?

Когда ваше сердце бьется, оно перекачивает кровь в ваше тело с помощью двух нижних мышечных камер. Эти камеры называются левым и правым желудочками.

Чтобы выкачать всю кровь из вашего сердца, требуется более одного сокращения. Фракция выброса (ФВ) — это измерение, которое врачи используют для расчета процента крови, оттекающей из этих желудочков при каждом сокращении.

Как правило, ФВ измеряется в левом желудочке. Он выполняет тяжелую работу в вашем теле, перекачивая кровь почти ко всем вашим основным органам. Однако текущие исследования показывают, что при определении ФВ нельзя игнорировать правый желудочек.

Точное показание EF левого желудочка (LVEF) можно измерить с помощью различных методов визуализации. Наиболее распространенные методы тестирования EF:

  • Эхокардиограмма. Эхокардиограмма использует звуковые волны для получения изображений вашего сердца. Текущие исследования показывают, что трехмерные изображения обеспечивают наилучшие и наиболее точные показания.
  • Магнитно-резонансная томография сердца (К-МРТ). C-MRI — это тест на основе изображений, который использует магнитное поле, радиоволны и компьютер для создания детальных изображений вашего сердца.
  • Катетеризация сердца. В этой процедуре ваш врач вставляет полую трубку в большой кровеносный сосуд, чтобы контролировать работу сердца. Во время катетеризации также выполняется коронарная ангиография. В катетер вводится краситель. Затем рентген контролирует кровоток в вашем сердце.
  • Кардиологический сканер ядерной медицины. Следы радиоактивных материалов попали в ваш кровоток. Затем они обнаруживаются камерами, которые создают изображения вашего сердца и его механизмов.
  • Компьютерная томография сердца. Эта рентгенологическая процедура выполняется быстро и обычно используется, когда другие тесты не дают результатов.

Нормальное значение ФВЛЖ для взрослых старше 20 лет составляет от 53 до 73 процентов. ФВЛЖ ниже 53 процентов для женщин и 52 процентов для мужчин считается низким. RVEF менее 45 процентов считается потенциальным индикатором проблем с сердцем. Две общие проблемы включают:

  • HFrEF (систолическая дисфункция). Это сердечная недостаточность с пониженной фракцией выброса.Это происходит, когда одна из четырех камер вашего сердца не может правильно сокращаться. Симптомы могут включать одышку, истощение или учащенное сердцебиение.
  • HFpEF (диастолическая дисфункция). Это сердечная недостаточность с сохраненной или нормальной фракцией выброса. Это происходит, когда ваши желудочки не расслабляются. Это уменьшает приток крови из вашего сердца в ваше тело. Симптомы HFpEF часто включают одышку во время упражнений или физической нагрузки и утомляемость. HFpEF может быть результатом старения, диабета или гипертонии.

С возрастом наши сердца тоже. Стенки сердца с годами утолщаются и частично теряют способность сокращаться и расслабляться. Но низкие значения EF также могут указывать на некоторую форму повреждения сердца, в том числе:

  • Кардиомиопатию. Это состояние приводит к утолщению тканей сердца.
  • Сердечный приступ. Это происходит, когда ваша сердечная мышца повреждена, когда одна или несколько ваших артерий заблокированы.
  • Ишемическая болезнь сердца. Это состояние сужает или блокирует левую и правую артерии сердца, что затрудняет приток крови к сердцу.
  • Систолическая сердечная недостаточность. Это происходит, когда левый желудочек не может перекачивать достаточно крови к вашему телу.
  • Порок клапана сердца. Это происходит, когда клапаны вашего сердца не могут нормально открываться и закрываться и кровь не может нормально течь в сердце.

Высокое значение EF может указывать на состояние сердца, известное как гипертрофическая кардиомиопатия (ГК). Это состояние ненормально утолщает части сердечной мышцы без очевидной причины. HC часто бывает генетическим.Трудно поставить диагноз, потому что многие люди могут жить без симптомов.

У небольшого числа людей HC может вызвать серьезные нарушения сердечного ритма (аритмии), требующие лечения. Если у вас есть семейная история HC, сообщите своему врачу, чтобы он мог следить за вами в течение долгого времени.

Существует множество вариантов лечения аномального EF, включая:

  • Ингибиторы ангиотензинпревращающего фермента (АПФ), блокаторы рецепторов ангиотензина II (БРА) или бета-блокаторы. Эти лекарства могут снизить количество гормонов, ослабляющих сердечную мышцу. Они также могут замедлить прогрессирование сердечных заболеваний.
  • Диуретики. Эти препараты помогают избавиться от лишней жидкости, которая вызывает отек и одышку.
  • Эплеренон или спиронолактон. Эти агенты помогают вам избавиться от лишней жидкости и могут помочь уменьшить жесткость вашего сердца.
  • Бивентрикулярный кардиостимулятор. Этот кардиостимулятор помогает синхронизировать сокращения левого и правого желудочков, чтобы они работали с максимальной нагрузкой.
  • Имплантируемый дефибриллятор сердца. Это устройство можно имплантировать прямо в грудную клетку. Он посылает в ваше сердце небольшие электрические триггеры, чтобы оно регулярно билось.
  • Гидралазин-нитрат. Эти два препарата оказались успешными в снижении артериального давления у людей, у которых все еще есть симптомы при приеме АПФ, БРА и бета-адреноблокаторов.

В целом перспективы аномального EF обнадеживают. В большинстве случаев при тщательном уходе и приеме лекарств вы можете управлять своими симптомами и продолжать жить нормальной жизнью.

Не забывайте обращать внимание на свое тело. Старайтесь придерживаться сбалансированной диеты с низким содержанием жиров и большого количества листовых зеленых овощей. Ежедневно делайте физические упражнения и поддерживайте регулярный режим сна.

PPT — Что такое дробь Презентация PowerPoint, бесплатная загрузка

  • Что такое дробь Дроби используются для представления частей целых чисел Дроби всегда имеют верхнее и нижнее число

  • Число внизу (знаменатель) говорит вам размер частей, составляющих целое, т.е.грамм. вся пицца состоит из четырех четвертей. О чем говорит нижняя цифра дроби?

  • Число вверху (числитель) говорит вам, сколько частей у вас целого, например осталось три четверти пиццы, так как одна четверть была съедена! Что вам говорит верхнее число дроби?

  • Примеры Сколько способов вы можете нарисовать три четверти?

  • Чем больше знаменатель, тем меньше дробь (или размер порции ). Кусочки пиццы меньше, когда вы разрезаете их на восьмые (8 частей), чем если бы вы разрезали их пополам (2 части).Это означает, что «1/8» меньше «1/2». Что является большей частью целого?

  • Упрощение дробей Некоторые дроби можно и нужно сокращать до более простых дробей. Если дробь может быть сокращена, должно быть число (кроме 1), которое можно разделить как на числитель, так и на знаменатель.

  • Упрощение фракций На этой диаграмме показано, как можно уменьшить фракции, выделенные одним цветом. Источник: Google.co.nz

  • Почему понимание дробей полезно Вы можете: уменьшить / увеличить количество каждого ингредиента в рецепте на нужное количество, чтобы он все еще работал. понять, сколько вы сэкономите с помощью специальных предложений, например «Заплати одну треть цены, купи один — получи второй за полцены» поделить что-то на равные части

  • Цели обучения Помочь работнику (ам) RSE: Понимать основные дроби Сокращать базовые дроби до простые дроби Действия Проверьте свои знания дробей.

  • Ответить

    Ваш адрес email не будет опубликован. Обязательные поля помечены *